Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion polymerization initiator concentration

During the nucleation stage of emulsion polymerization, the concentration of initiator exerts an influence on the number of polymer particles formed. An initiated particle grows very rapidly as polymer is formed. As the particle increases in surface area, it adsorbs surfactant from solution thus reducing the possible number of micelles in the system. Therefore, the faster that initiation occurs, then the greater will... [Pg.31]

The surfactant is initially distributed through three different locations dissolved as individual molecules or ions in the aqueous phase, at the surface of the monomer drops, and as micelles. The latter category holds most of the surfactant. Likewise, the monomer is located in three places. Some monomer is present as individual molecules dissolved in the water. Some monomer diffuses into the oily interior of the micelle, where its concentration is much greater than in the aqueous phase. This process is called solubilization. The third site of monomer is in the dispersed droplets themselves. Most of the monomer is located in the latter, since these drops are much larger, although far less abundant, than the micelles. Figure 6.10 is a schematic illustration of this state of affairs during emulsion polymerization. [Pg.399]

Initia.tors, The initiators most commonly used in emulsion polymerization are water soluble although partially soluble and oil-soluble initiators have also been used (57). Normally only one initiator type is used for a given polymerization. In some cases a finishing initiator is used (58). At high conversion the concentration of monomer in the aqueous phase is very low, leading to much radical—radical termination. An oil-soluble initiator makes its way more readily into the polymer particles, promoting conversion of monomer to polymer more effectively. [Pg.25]

Propagation. The rate of emulsion polymerization has been found to depend on initiator, monomer, and emulsifier concentrations. In a system of vinyl acetate, sodium lauryl sulfate, and potassium persulfate, the following relationship for the rate of polymerization has been suggested (85) ... [Pg.465]

Emulsion Polymerization. Emulsion polymerization takes place in a soap micelle where a small amount of monomer dissolves in the micelle. The initiator is water-soluble. Polymerization takes place when the radical enters the monomer-swollen micelle (91,92). Additional monomer is supphed by diffusion through the water phase. Termination takes place in the growing micelle by the usual radical-radical interactions. A theory for tme emulsion polymerization postulates that the rate is proportional to the number of particles [N. N depends on the 0.6 power of the soap concentration [S] and the 0.4 power of initiator concentration [i] the average number of radicals per particle is 0.5 (93). [Pg.502]

The kinetic mechanism of emulsion polymerization was developed by Smith and Ewart [10]. The quantitative treatment of this mechanism was made by using Har-kin s Micellar Theory [18,19]. By means of quantitative treatment, the researchers obtained an expression in which the particle number was expressed as a function of emulsifier concentration, initiation, and polymerization rates. This expression was derived for the systems including the monomers with low water solubility and partly solubilized within the micelles formed by emulsifiers having low critical micelle concentration (CMC) values [10]. [Pg.192]

The rate of an ideal emulsion polymerization is given by Eqn (4). In this expression [/] is the initiator concentration, [ ] is the emulsifier concentration, and [M] is the concentration of monomer within the forming latex particles. This value is constant for a long reaction period until all the monomer droplets disappear within the water phase. [Pg.192]

Flgure 4 The effect of initiator concentration on the variation of monomer conversion by the polymerization time in the emulsion polymerization of styrene. Styrene-water = 1/3 SDS = 15.4 mM reaction volume = 300 ml stirring rate = 250 rpm temperature = 70°C. [Pg.195]

Based on the Smith-Ewart theory, the number of latex particles formed and the rate of polymerization in Interval II is proportional with the 0,6 power of the emulsifier concentration. This relation was also observed experimentally for the emulsion polymerization of styrene by Bartholomeet al. [51], Dunn and Al-Shahib [52] demonstrated that when the concentrations of the different emulsifiers were selected so that the micellar concentrations were equal, the same number of particles having the same size could be obtained by the same polymerization rates in Interval II in the existence of different emulsifiers [52], The number of micelles formed initially in the polymerization medium increases with the increasing emulsifier concentration. This leads to an increase in the total amount of monomer solubilized by micelles. However, the number of emulsifier molecules in one micelle is constant for a certain type of emulsifier and does not change with the emulsifier concentration. The monomer is distributed into more micelles and thus, the... [Pg.197]

The concentration of monomers in the aqueous phase is usually very low. This means that there is a greater chance that the initiator-derived radicals (I ) will undergo side reactions. Processes such as radical-radical reaction involving the initiator-derived and oligomeric species, primary radical termination, and transfer to initiator can be much more significant than in bulk, solution, or suspension polymerization and initiator efficiencies in emulsion polymerization are often very low. Initiation kinetics in emulsion polymerization are defined in terms of the entry coefficient (p) - a pseudo-first order rate coefficient for particle entry. [Pg.64]

Photolysis or thermolysis of persulfate ion (41) (also called peroxydisulfate) results in hoinolysis of the 0-0 bond and formation of two sulfate radical anions. The thermal reaction in aqueous media has been widely studied."51 232 The rate of decomposition is a complex function of pH, ionic strength, and concentration. Initiator efficiencies for persulfate in emulsion polymerization are low (0.1-0.3) and depend upon reaction conditions (Le. temperature, initiator concentration)."33... [Pg.94]

This paper presents the physical mechanism and the structure of a comprehensive dynamic Emulsion Polymerization Model (EPM). EPM combines the theory of coagulative nucleation of homogeneously nucleated precursors with detailed species material and energy balances to calculate the time evolution of the concentration, size, and colloidal characteristics of latex particles, the monomer conversions, the copolymer composition, and molecular weight in an emulsion system. The capabilities of EPM are demonstrated by comparisons of its predictions with experimental data from the literature covering styrene and styrene/methyl methacrylate polymerizations. EPM can successfully simulate continuous and batch reactors over a wide range of initiator and added surfactant concentrations. [Pg.360]

After only a small percentage of the monomer has been converted to polymer (in the presence of emulsifier), the initially low surface tension of the aqueous emulsion rises rather abruptly, indicating a decrease in the soap concentration in the aqueous phase of the emulsion. The soap concentration is then too low to maintain micelles, which may therefore be abandoned as a locus for further polymerization beyond this point. As additional evidence of the depletion of soap in the aqueous phase, monomer droplets are no longer stable, and upon discontinuing agitation a supernatant monomer layer is readily formed. [Pg.205]


See other pages where Emulsion polymerization initiator concentration is mentioned: [Pg.607]    [Pg.155]    [Pg.175]    [Pg.147]    [Pg.154]    [Pg.156]    [Pg.686]    [Pg.240]    [Pg.120]    [Pg.243]    [Pg.401]    [Pg.143]    [Pg.168]    [Pg.278]    [Pg.279]    [Pg.279]    [Pg.350]    [Pg.266]    [Pg.439]    [Pg.466]    [Pg.539]    [Pg.15]    [Pg.167]    [Pg.170]    [Pg.190]    [Pg.193]    [Pg.195]    [Pg.197]    [Pg.198]    [Pg.200]    [Pg.200]    [Pg.210]    [Pg.216]    [Pg.218]    [Pg.205]    [Pg.376]    [Pg.168]    [Pg.205]   
See also in sourсe #XX -- [ Pg.58 ]




SEARCH



Emulsion concentrates

Emulsion concentration

Emulsion concentrators

Emulsion initiation

Emulsion polymerization

Emulsion polymerization concentrations

Emulsion polymerization initiation

Emulsion polymerization initiators

Emulsions, polymeric

Initiator concentration

Initiator emulsion

Initiator polymeric

Polymerization emulsion polymerizations

© 2024 chempedia.info