Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrostatics, fundamentals

Taylor, D. M., and Seeker, P. E., Industrial Electrostatics Fundamentals and Measurements, Research Studies Press, Taunton, UK (1994)... [Pg.870]

One fascinating feature of the physical chemistry of surfaces is the direct influence of intermolecular forces on interfacial phenomena. The calculation of surface tension in section III-2B, for example, is based on the Lennard-Jones potential function illustrated in Fig. III-6. The wide use of this model potential is based in physical analysis of intermolecular forces that we summarize in this chapter. In this chapter, we briefly discuss the fundamental electromagnetic forces. The electrostatic forces between charged species are covered in Chapter V. [Pg.225]

Deep Bed Filters. Deep bed filtration is fundamentally different from cake filtration both in principle and appHcation. The filter medium (Fig. 4) is a deep bed with pore size much greater than the particles it is meant to remove. No cake should form on the face of the medium. Particles penetrate into the medium where they separate due to gravity settling, diffusion, and inertial forces attachment to the medium is due to molecular and electrostatic forces. Sand is the most common medium and multimedia filters also use garnet and anthracite. The filtration process is cycHc, ie, when the bed is full of sohds and the pressure drop across the bed is excessive, the flow is intermpted and solids are backwashed from the bed, sometimes aided by air scouring or wash jets. [Pg.387]

The combination of electrostatic interaction (induced dipole—dipole interaction) with an increase in entropy resulting from the discharge of bound water is fundamental to PVP s abiUty to complex with a variety of large anions. [Pg.531]

In this chapter we provide an introductory overview of the imphcit solvent models commonly used in biomolecular simulations. A number of questions concerning the formulation and development of imphcit solvent models are addressed. In Section II, we begin by providing a rigorous fonmilation of imphcit solvent from statistical mechanics. In addition, the fundamental concept of the potential of mean force (PMF) is introduced. In Section III, a decomposition of the PMF in terms of nonpolar and electrostatic contributions is elaborated. Owing to its importance in biophysics. Section IV is devoted entirely to classical continuum electrostatics. For the sake of completeness, other computational... [Pg.134]

S. Oglesby and G. B Nichols, "A Manual of Electrostatic Precipitator Technology, Part I -Fundamentals," Contract CRA 2269-73 for NAPCA, Cincinnati, Ohio, 1970, pp. 5-7. [Pg.491]

Electrostatic precipitation is one of the fundamental means of separating solid or liquid particles from gas streams. This technique has been utilized in numerous applications, including industrial gas-cleaning systems, air cleaning in general ventilation systems, and household room air cleaners. [Pg.1211]

We have met the electrostatic potential 4> in earlier chapters. The vector potential A is a fundamental construct in electromagnetism (HinchUffe and Munn, 1985). [Pg.294]

One area where the concept of atomic charges is deeply rooted is force field methods (Chapter 2). A significant part of the non-bonded interaction between polar molecules is described in terms of electrostatic interactions between fragments having an internal asymmetry in the electron distribution. The fundamental interaction is between the Electrostatic Potential (ESP) generated by one molecule (or fraction of) and the charged particles of another. The electrostatic potential at position r is given as a sum of contributions from the nuclei and the electronic wave function. [Pg.220]

Theoretically, the problem has been attacked by various approaches and on different levels. Simple derivations are connected with the theory of extrathermodynamic relationships and consider a single and simple mechanism of interaction to be a sufficient condition (2, 120). Alternative simple derivations depend on a plurality of mechanisms (4, 121, 122) or a complex mechanism of so called cooperative processes (113), or a particular form of temperature dependence (123). Fundamental studies in the framework of statistical mechanics have been done by Riietschi (96), Ritchie and Sager (124), and Thorn (125). Theories of more limited range of application have been advanced for heterogeneous catalysis (4, 5, 46-48, 122) and for solution enthalpies and entropies (126). However, most theories are concerned with reactions in the condensed phase (6, 127) and assume the controlling factors to be solvent effects (13, 21, 56, 109, 116, 128-130), hydrogen bonding (131), steric (13, 116, 132) and electrostatic (37, 133) effects, and the tunnel effect (4,... [Pg.418]

The surface forces apparatus (SEA) can measure the interaction forces between two surfaces through a liquid [10,11]. The SEA consists of two curved, molecularly smooth mica surfaces made from sheets with a thickness of a few micrometers. These sheets are glued to quartz cylindrical lenses ( 10-mm radius of curvature) and mounted with then-axes perpendicular to each other. The distance is measured by a Fabry-Perot optical technique using multiple beam interference fringes. The distance resolution is 1-2 A and the force sensitivity is about 10 nN. With the SEA many fundamental interactions between surfaces in aqueous solutions and nonaqueous liquids have been identified and quantified. These include the van der Waals and electrostatic double-layer forces, oscillatory forces, repulsive hydration forces, attractive hydrophobic forces, steric interactions involving polymeric systems, and capillary and adhesion forces. Although cleaved mica is the most commonly used substrate material in the SEA, it can also be coated with thin films of materials with different chemical and physical properties [12]. [Pg.246]

The charge of a number of proteins has been measured by titration. The early experimental work focused on the determination of charge as a function of pH later work focused on comparing the experimental and theoretical results the latter obtained from the extensions of the Tanford-Kirkwood models on the electrostatic behavior of proteins. Ed-sall and Wyman [104] discuss the early work on the electrostatics of polar molecules and ions in solution, considering fundamental coulombic interactions and accounting for the dielectric properties of the media. Tanford [383,384], and Tanford and Kirkwood [387] describe the development of the Tanford-Kirkwood theories of protein electrostatics. For more recent work on protein electrostatics see Lenhoff and coworkers [64,146,334]. [Pg.588]


See other pages where Electrostatics, fundamentals is mentioned: [Pg.1]    [Pg.2]    [Pg.1]    [Pg.2]    [Pg.1]    [Pg.199]    [Pg.4]    [Pg.435]    [Pg.103]    [Pg.1606]    [Pg.141]    [Pg.334]    [Pg.1197]    [Pg.1211]    [Pg.801]    [Pg.98]    [Pg.254]    [Pg.270]    [Pg.221]    [Pg.221]    [Pg.498]    [Pg.123]    [Pg.206]    [Pg.383]    [Pg.136]    [Pg.160]    [Pg.214]    [Pg.300]    [Pg.14]    [Pg.395]    [Pg.231]    [Pg.101]    [Pg.128]    [Pg.168]    [Pg.109]    [Pg.658]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 ]




SEARCH



Electrostatic Fundamentals

Electrostatic Fundamentals

Electrostatic precipitator fundamentals

Electrostatics fundamental equations

Fundamental equations of electrostatics

© 2024 chempedia.info