Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrostatic interactions bonding

Electrostatic interaction bond dipole-bond dipole... [Pg.164]

The electrostatic interactions between the ions when dissolved in the polymer are a legacy of the electrostatic interactions which existed in the crystalline salt. As a result of the persistence of strong ion-ion interactions when a salt is dissolved in a polymer, dissolution may be regarded as a process in which some of the electrostatic interactions (bonds) between ions in the salt are replaced by interactions between the cation and the polymer. [Pg.121]

By using an effective, distance-dependent dielectric constant, the ability of bulk water to reduce electrostatic interactions can be mimicked without the presence of explicit solvent molecules. One disadvantage of aU vacuum simulations, corrected for shielding effects or not, is the fact that they cannot account for the ability of water molecules to form hydrogen bonds with charged and polar surface residues of a protein. As a result, adjacent polar side chains interact with each other and not with the solvent, thus introducing additional errors. [Pg.364]

Although in teraetion s between vicinal I 4 atom s arc n om in ally treated as non bonded interactions, triost of the force fields treat these somewhat differently from normal 1 5 and greater non-bonded interactions. HyperCbern allows each of these 1 4 non-bonded interactions to be scaled down by a scale factor < 1.0 with AMBHR or OPI-S. bor HIO+ the electrostatic may be scaled and different param eters rn ay be ti sed for I 4 van dcr Waals interactions, fh e. AMBHR force field, for exam pie, n orrn a lly uses a seal in g factor of 0.5 for both van der Waals an d electrostatic interactions. [Pg.182]

Ihi.. same molecule but separated by at least three bonds (i.e. have a 1, h relationship where n > 4). In a simple force field the non-bonded term is usually modelled using a Coulomb piilential term for electrostatic interactions and a Lennard-Jones potential for van der IV.uls interactions. [Pg.185]

Independent molecules and atoms interact through non-bonded forces, which also play an important role in determining the structure of individual molecular species. The non-bonded interactions do not depend upon a specific bonding relationship between atoms, they are through-space interactions and are usually modelled as a function of some inverse power of the distance. The non-bonded terms in a force field are usually considered in two groups, one comprising electrostatic interactions and the other van der Waals interactions. [Pg.199]

Fhe van der Waals and electrostatic interactions between atoms separated by three bonds (i.c. the 1,4 atoms) are often treated differently from other non-bonded interactions. The interaction between such atoms contributes to the rotational barrier about the central bond, in conjunction with the torsional potential. These 1,4 non-bonded interactions are often scaled down by an empirical factor for example, a factor of 2.0 is suggested for both the electrostatic and van der Waals terms in the 1984 AMBER force field (a scale factor of 1/1.2 is used for the electrostatic terms in the 1995 AMBER force field). There are several reasons why one would wish to scale the 1,4 interactions. The error associated wilh the use of an repulsion term (which is too steep compared with the more correct exponential term) would be most significant for 1,4 atoms. In addition, when two 1,4... [Pg.229]

The force-field model for ethanol contains C-O and O—H bond-stretching contributions in ethane thiol these are replaced by C—S and S—H parameters. Similarly, in ethanol there will be angle-bending terms due to C—O—H, C—C—O and H—C—O angles in ethane thiol these will be C—S—H, C—C—S and H—C—S. The torsional contribution will be modified appropriately, as will the van der Waals and electrostatic interactions (both those within the... [Pg.582]

The theory predicts high stabilities for hard acid - hard base complexes, mainly resulting from electrostatic interactions and for soft acid - soft base complexes, where covalent bonding is also important Hard acid - soft base and hard base - soft acid complexes usually have low stability. Unfortunately, in a quantitative sense, the predictive value of the HSAB theory is limited. Thermodynamic analysis clearly shows a difference between hard-hard interactions and soft-soft interactions. In water hard-hard interactions are usually endothermic and occur only as a result of a gain in entropy, originating from a liberation of water molecules from the hydration shells of the... [Pg.28]

Stretching, bond bending, torsions, electrostatic interactions, van der Waals forces, and hydrogen bonding. Force fields differ in the number of terms in the energy expression, the complexity of those terms, and the way in which the constants were obtained. Since electrons are not explicitly included, electronic processes cannot be modeled. [Pg.50]

Another difference between the force fields is the calculation of electrostatic interactions. AMBER, BIO+, and OPLS use point charges to model electrostatic interactions. MM+ calculates electrostatic interactions using bond dipoles. The bond dipole method may not adequately simulate very polar or charged systems. [Pg.103]

The exchange repulsion and dispersive attraction com bine in what is referred to as a van der Waals term. Sometimes a potential is added to account for hydrogen bonding explicitly while in other situations this is expected to fall out of ordinary electrostatic interactions. [Pg.174]

Fig. 5. Protein folding. The unfolded polypeptide chain coUapses and assembles to form simple stmctural motifs such as -sheets and a-hehces by nucleation-condensation mechanisms involving the formation of hydrogen bonds and van der Waal s interactions. Small proteins (eg, chymotrypsin inhibitor 2) attain their final (tertiary) stmcture in this way. Larger proteins and multiple protein assembhes aggregate by recognition and docking of multiple domains (eg, -barrels, a-helix bundles), often displaying positive cooperativity. Many noncovalent interactions, including hydrogen bonding, van der Waal s and electrostatic interactions, and the hydrophobic effect are exploited to create the final, compact protein assembly. Further stmctural... Fig. 5. Protein folding. The unfolded polypeptide chain coUapses and assembles to form simple stmctural motifs such as -sheets and a-hehces by nucleation-condensation mechanisms involving the formation of hydrogen bonds and van der Waal s interactions. Small proteins (eg, chymotrypsin inhibitor 2) attain their final (tertiary) stmcture in this way. Larger proteins and multiple protein assembhes aggregate by recognition and docking of multiple domains (eg, -barrels, a-helix bundles), often displaying positive cooperativity. Many noncovalent interactions, including hydrogen bonding, van der Waal s and electrostatic interactions, and the hydrophobic effect are exploited to create the final, compact protein assembly. Further stmctural...
The following sections contain a review of many of the varied synthetic systems that have been developed to date utilising noncovalent interactions to form assembhes of molecules. These sections are loosely demarcated according to the most important type of noncovalent interactions utilized in conferring supramolecular order (ie, van der Waal s interactions, electrostatic interactions, and hydrogen bonds). For extensive reviews, see References 1,2,4—6,22,46,49,110—112. Finally, the development of self-assembling, self-replicating synthetic systems is noted. [Pg.208]


See other pages where Electrostatic interactions bonding is mentioned: [Pg.772]    [Pg.189]    [Pg.208]    [Pg.772]    [Pg.189]    [Pg.208]    [Pg.2398]    [Pg.2622]    [Pg.168]    [Pg.308]    [Pg.347]    [Pg.351]    [Pg.361]    [Pg.362]    [Pg.368]    [Pg.143]    [Pg.243]    [Pg.532]    [Pg.592]    [Pg.227]    [Pg.28]    [Pg.180]    [Pg.182]    [Pg.67]    [Pg.179]    [Pg.199]    [Pg.205]    [Pg.209]    [Pg.458]    [Pg.408]    [Pg.195]    [Pg.200]    [Pg.201]    [Pg.214]    [Pg.101]   
See also in sourсe #XX -- [ Pg.329 , Pg.336 , Pg.340 , Pg.350 , Pg.363 , Pg.824 ]




SEARCH



Bond electrostatic

Bond interactions

Bonded interactions

Bonding interactions

Electrostatic Interactions and the Hydrogen Bond

Electrostatic and Orbital Interactions in H Bonds

Electrostatic and hydrogen-bonding interactions

Electrostatic bonding

Electrostatic bonds/interactions

Electrostatic bonds/interactions

Electrostatic interactions hydrogen bonds

Electrostatic potential, molecular interactive halogen bonding

Electrostatic potential, molecular interactive hydrogen bond acceptor

Hydrogen bonding, 39 - Electrostatic interactions, 40 - Hydrophobicity, 44 - Dispersion forces

Interaction electrostatic

Non-bonded interactions electrostatic

Noncovalent bonds electrostatic interactions

Phosphate recognition, electrostatic interactions/hydrogen bonds

Protein electrostatic interactions, bond strength

© 2024 chempedia.info