Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrospray atomization

Zarrabi, A., M. Vossoughi, 1. Alemzadeh, and M.R. Chitsazi. Monodispersed polymeric nanoparticles fabrication by electrospray atomization. International Journal of Polymeric Materials and Polymeric Biomaterials 61(8) (2012) 611-626. [Pg.434]

Lojewski, B., W. Yang, H. Duan, C. Xu, and W. Deng. Design, fabrication, and characterization of linear multiplexed electrospray atomizers micro-machined from metal and polymers. Aerosol Science and Technology 47(2) (2012) 146-152. [Pg.435]

Rulison AJ, Flagan RC (1993) Scale-up of electrospray atomization using linear arrays of Taylor... [Pg.162]

In conclusion, electrospray atomization followed by a DMA and an aerosol size spectrometer provides a scheme suitable for on-line sizing of monodisperse nanoparticles originally in solution. However, one must carefully avoid interferences from residue particles formed in the electrospray. [Pg.35]

A connnon feature of all mass spectrometers is the need to generate ions. Over the years a variety of ion sources have been developed. The physical chemistry and chemical physics communities have generally worked on gaseous and/or relatively volatile samples and thus have relied extensively on the two traditional ionization methods, electron ionization (El) and photoionization (PI). Other ionization sources, developed principally for analytical work, have recently started to be used in physical chemistry research. These include fast-atom bombardment (FAB), matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ES). [Pg.1329]

FigureBl.7.2. Schematic representations of alternative ionization methods to El and PI (a) fast-atom bombardment in which a beam of keV atoms desorbs solute from a matrix (b) matrix-assisted laser desorption ionization and (c) electrospray ionization. FigureBl.7.2. Schematic representations of alternative ionization methods to El and PI (a) fast-atom bombardment in which a beam of keV atoms desorbs solute from a matrix (b) matrix-assisted laser desorption ionization and (c) electrospray ionization.
The LC/TOF instmment was designed specifically for use with the effluent flowing from LC columns, but it can be used also with static solutions. The initial problem with either of these inlets revolves around how to remove the solvent without affecting the substrate (solute) dissolved in it. Without this step, upon ionization, the large excess of ionized solvent molecules would make it difficult if not impossible to observe ions due only to the substrate. Combined inlet/ionization systems are ideal for this purpose. For example, dynamic fast-atom bombardment (FAB), plas-maspray, thermospray, atmospheric-pressure chemical ionization (APCI), and electrospray (ES)... [Pg.163]

Some mild methods of ionization (e.g., chemical ionization. Cl fast-atom bombardment, FAB electrospray, ES) provide molecular or quasi-molecular ions with so little excess of energy that little or no fragmentation takes place. Thus, there are few, if any, normal fragment ions, and metastable ions are virtually nonexistent. Although these mild ionization techniques are ideal for yielding molecular mass information, they are almost useless for providing details of molecular structure, a decided disadvantage. [Pg.228]

This method is still in use but is not described in this book because it has been superseded by more recent developments, such as particle beam and electrospray. These newer techniques have no moving parts, are quite robust, and can handle a wide variety of compound types. Chapters 8 through 13 describe these newer ionization techniques, including electrospray, atmospheric pressure ionization, plasmaspray, thermospray, dynamic fast-atom bombardment (FAB), and particle beam. [Pg.263]

To achieve sufficient vapor pressure for El and Cl, a nonvolatile liquid will have to be heated strongly, but this heating may lead to its thermal degradation. If thermal instability is a problem, then inlet/ionization systems need to be considered, since these do not require prevolatilization of the sample before mass spectrometric analysis. This problem has led to the development of inlet/ionization systems that can operate at atmospheric pressure and ambient temperatures. Successive developments have led to the introduction of techniques such as fast-atom bombardment (FAB), fast-ion bombardment (FIB), dynamic FAB, thermospray, plasmaspray, electrospray, and APCI. Only the last two techniques are in common use. Further aspects of liquids in their role as solvents for samples are considered below. [Pg.279]

LC can be combined with all kinds of mass spectrometers, but for practical reasons only quadrapolar, magnetic/electric-sector, and TOP instruments are in wide use. A variety of interfaces are used, including thermospray, plasmaspray, electrospray, dynamic fast-atom bombardment (FAB), particle beam, and moving belt. [Pg.415]

Electroslag Electroslag welding Electrospray Electrostatic atomizer Electrostatic charges... [Pg.358]

An abundant molecular ion may indicate that an aromatic compound or highly unsaturated ring compound is present. If no molecular ion is observed and one cannot be deduced, the use of chemical ionization (ci), negative chemical ionization (nci), fast atom bombardment (FAB), or electrospray ionization (ESI) should provide a molecular ion. [Pg.20]

Ionization methods that may be utihzed in LC-MS include electron ionization (El), chemical ionization (Cl), fast-atom bombardment (FAB), thermospray (TSP), electrospray (ESI) and atmospheric-pressure chemical ionization (APCI). [Pg.52]

Cl is not the only ionization technique where this aspect of interpretation must be considered carefully fast-atom bombardment, thermospray, electrospray and atmospheric-pressure chemical ionization, described below in Sections 3.2.3, 4.6, 4.7 and 4.8, respectively, all produce adducts in the molecular ion region of their spectra. [Pg.54]

Continuous fast atom bombardment Electrospray/APCI... [Pg.765]

Various forms of off- and on-line AES/AAS can achieve element specific detection in IC. The majority of atomic emission techniques for detection in IC are based on ICP. In the field of speciation analysis both IC-ICP-AES and IC-ICP-MS play an important role. Besides the availability of the ICP ion source for elemental MS analysis, structural information can be provided by interfaces and ion sources like particle beam or electrospray. [Pg.272]

Fast atom bombardment (FAB) Plasma desorption (PD) Liquid secondary-ion mass spectrometry (LSIMS) Thermospray (TSP)/plasmaspray (PSP) Electrohydrodynamic ionisation (EHI) Multiphoton ionisation (MPI) Atmospheric pressure chemical ionisation (APCI) Electrospray ionisation (ESI) Ion spray (ISP) Matrix-assisted laser desorption/ionisation (MALDI) Atmospheric pressure photoionisation (APPI) Triple quadrupole (QQQ) Four sector (EBEB) Hybrid (EBQQ) Hybrid (EB-ToF, Q-ToF) Tandem ToF-ToF Photomultiplier... [Pg.352]

The mass spectra of mixtures are often too complex to be interpreted unambiguously, thus favouring the separation of the components of mixtures before examination by mass spectrometry. Nevertheless, direct polymer/additive mixture analysis has been reported [22,23], which is greatly aided by tandem MS. Coupling of mass spectrometry and a flowing liquid stream involves vaporisation and solvent stripping before introduction of the solute into an ion source for gas-phase ionisation (Section 1.33.2). Widespread LC-MS interfaces are thermospray (TSP), continuous-flow fast atom bombardment (CF-FAB), electrospray (ESP), etc. Also, supercritical fluids have been linked to mass spectrometry (SFE-MS, SFC-MS). A mass spectrometer may have more than one inlet (total inlet systems). [Pg.353]

Mass spectrometry (MS) in its various forms, and with various procedures for vaporization and ionization, contributes to the identification and characterization of complex species by their isotopomer pattern of the intact ions (usually cation) and by their fragmentation pattern. Upon ionization by the rough electron impact (El) the molecular peak often does not appear, in contrast to the more gentle field desorption (FD) or fast-atom bombardment (FAB) techniques. An even more gentle way is provided by the electrospray (ES) method, which allows all ionic species (optionally cationic or anionic) present in solution to be detected. Descriptions of ESMS and its application to selected problems are published 45-47 also a representative application of this method in a study of phosphine-mercury complexes in solution is reported.48... [Pg.1256]


See other pages where Electrospray atomization is mentioned: [Pg.1544]    [Pg.1545]    [Pg.21]    [Pg.1544]    [Pg.1545]    [Pg.21]    [Pg.1331]    [Pg.160]    [Pg.404]    [Pg.2]    [Pg.387]    [Pg.468]    [Pg.493]    [Pg.180]    [Pg.53]    [Pg.401]    [Pg.420]    [Pg.267]    [Pg.513]    [Pg.988]    [Pg.990]    [Pg.384]    [Pg.544]    [Pg.1191]    [Pg.1192]    [Pg.260]   


SEARCH



Electrosprays atomization technique

© 2024 chempedia.info