Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic Nitration Reactions

The use ofultrasound has been shown to enhance the reaction rate in the nitration of phenols in [HsC2NH3][N03] [102] with an Fe(N03)3 catalyst [103]. Signifleant improvements in selectivities and a ten-fold reduction in reaction time were observed compared with similar silent reactions. [Pg.316]


Kinetic studies of nitration using dilute solutions of dinitrogen pentoxide in organic solvents, chiefly carbon tetrachloride, have provided evidence for the operation, under certain circumstances of the molecular species as the electrophile. The reactions of benzene and toluene were inconveniently fast, and therefore a series of halogenobenzenes and aromatic esters was examined. [Pg.52]

This genera] scheme could be used to explain hydrogen exchange in the 5-position, providing a new alternative for the reaction (466). This leads us also to ask whether some reactions described as typically electrophilic cannot also be rationalized by a preliminary hydration of the C2=N bond. The nitration reaction of 2-dialkylaminothiazoles could occur, for example, on the enamine-like intermediate (229) (Scheme 141). This scheme would explain why alkyl groups on the exocyclic nitrogen may drastically change the reaction pathway (see Section rV.l.A). Kinetic studies and careful analysis of by-products would enable a check of this hypothesis. [Pg.85]

The most widely studied electrophilic substitution reactions are haloge-nation and nitration. Two main types of substrates are possible alkyl-thiazoles and arylthiazoles. [Pg.380]

All the halogenothiazoles, depending on the electron-withdrawing power of the halosubstituent, together with the electron-withdrawing power of the azasubstituent, are only slightly susceptible to electrophilic substitution reactions such as nitration, sulfonation, and so on, while the polyhalogenatjon reaction can take place. [Pg.574]

The 2-nitrothiazole can be reduced to the corresponding aminothiazole by catalytic or chemical reduction (82, 85, 89). The 5-nitrothiazole can also be reduced with low yield to impure 5-aminothiazole (1, 85). All electrophilic substitution reactions are largely inhibited by the presence of the nitro substituent. Nevertheless, the nitration of 2-nitrothiazoIe to 2,4-dinitrothiazole can be accomplished (see Section IV). [Pg.577]

Reactions. The CF O— group exerts predominant para orientation in electrophilic substitution reactions such as nitration, halogenation, acylation, and alkylation (350). [Pg.333]

Electrophilic substitution reactions of diarylamines are easily accompHshed since the amino group activates the aromatic ring. Thus, DPA reacts with bromine or chlorine to form the 2,2H,4 tetrahalo derivative nitration usually produces the trinitro compound. [Pg.243]

The aromatic nature of lignin contrasts with the aliphatic stmcture of the carbohydrates and permits the selective use of electrophilic substitution reactions, eg, chlorination, sulfonation, or nitration. A portion of the phenoUc hydroxyl units, which are estimated to comprise 30 wt % of softwood lignin, are unsubstituted. In alkaline systems the ionized hydroxyl group is highly susceptible to oxidative reactions. [Pg.253]

Reactions. In general, isoquiaoline undergoes electrophilic substitution reactions at the 5-position and nucleophilic reactions at the 1-position. Nitration with mixed acids produces a 9 1 mixture of 5-nitroisoquiaoline [607-32-9] and 8-nitroisoquinoline [7473-12-3]. The ratio changes slightiy with temperature (143,144). Sulfonation of isoquiaoline gives a mixture with 5-isoquiaolinesulfonic acid [27655-40-9] as the principal product. [Pg.395]

The iacreased chemical stabiUty of the 6-deoxytetracyclines allows chemical modification with retention of biological activity electrophilic substitutions have been carried out at C-7 and C-9 under strongly acidic conditions (46—53). Reactions of 6-deoxy-6-demethyltetracycline [808-26-4] (16), C21H22N2O7, with electrophiles, such as nitrate ion (49), bromomium ion (46,47) (from N-bromosuccinimide), or N-hydroxymethylphthalimide (53), yielded 7-substituted tetracyclines. In the case of the nitration reaction, both the 7- and 9-nitro isomers (17, X = NO2, Y = H) and (17, X = H, Y = NO2) were obtained. [Pg.179]

Electrophilic substitution reactions of unsubstituted quinoxaline or phenazine are unusual however, in view of the increased resonance possibilities in the transition states leading to the products one would predict that electrophilic substitution should be more facile than with pyrazine itself (c/. the relationship between pyridine and quinoline). In the case of quinoxaline, electron localization calculations (57JCS2521) indicate the highest electron density at positions 5 and 8 and substitution would be expected to occur at these positions. Nitration is only effected under forcing conditions, e.g. with concentrated nitric acid and oleum at 90 °C for 24 hours a 1.5% yield of 5-nitroquinoxaline (19) is obtained. The major product is 5,6-dinitroquinoxaline (20), formed in 24% yield. [Pg.163]

The range of preparatively useful electrophilic substitution reactions is often limited by the acid sensitivity of the substrates. Whereas thiophene can be successfully sulfonated in 95% sulfuric acid at room temperature, such strongly acidic conditions cannot be used for the sulfonation of furan or pyrrole. Attempts to nitrate thiophene, furan or pyrrole under conditions used to nitrate benzene and its derivatives invariably result in failure. In the... [Pg.45]

TWo types of rate expressions have been found to describe the kinetics of most aromatic nitration reactions. With relatively unreactive substrates, second-order kinetics, first-order in the nitrating reagent and first-order in the aromatic, are observed. This second-order relationship corresponds to rate-limiting attack of the electrophile on the aromatic reactant. With more reactive aromatics, this step can be faster than formation of the active electrq)hile. When formation of the active electrophile is the rate-determining step, the concentration of the aromatic reactant no longer appears in the observed rate expression. Under these conditions, different aromatic substrates undergo nitration at the same rate, corresponding to the rate of formation of the active electrophile. [Pg.554]

Other typical electrophilic aromatic substitution reactions—nitration (second entr-y), sul-fonation (fourth entry), and Friedel-Crafts alkylation and acylation (fifth and sixth entries)—take place readily and are synthetically useful. Phenols also undergo electrophilic substitution reactions that are limited to only the most active aromatic compounds these include nitrosation (third entry) and coupling with diazonium salts (seventh entry). [Pg.1002]

Diaza-l,6-dioxa-6<2-tellurapentalenes 97 do not undergo electrophilic substitution reactions such as halogenation, nitration, or Friedel-Krafts and Vilsmaier reactions (79BSF199). [Pg.33]

Isoxazoles are known at present to undergo the following electrophilic substitution reactions nitration, sulfonation, halogenation, chloroalkylation, hydroxymethylation, and mercuration. Repeated attempts to effect the Friedel-Crafts reaction in the isoxazole series in the authors laboratory failed. The isoxazole nucleus seems not active enough to react with weak electrophilic reagents. [Pg.382]

The first electrophilic substitution reaction studied in the isoxazole series was the nitration of 3,5-dimethylisoxazole reported by Morgan and Burgess in 1921.The reaction occurs smoothly on heating with mixed nitric and sulfuric acids at 100°C and leads to the 4-nitro derivative in 86% yield. [Pg.382]

The presently known electrophilic substitution reactions all occur at the 4-position of the isoxazole nucleus, corresponding to the j3-position in pyridine. Thus the influence of the nitrogen atom is predominant. The introduction of alkyl and, particularly, aryl substituents into the isoxazole nucleus markedly increases its reactivity (on the other hand, during nitration and sulfonation the isoxazole nucleus also activates the phenyl nucleus). [Pg.389]

Similar to the alkylation and the chlorination of benzene, the nitration reaction is an electrophilic substitution of a benzene hydrogen (a proton) with a nitronium ion (NO ). The liquid-phase reaction occurs in presence of both concentrated nitric and sulfuric acids at approximately 50°C. Concentrated sulfuric acid has two functions it reacts with nitric acid to form the nitronium ion, and it absorbs the water formed during the reaction, which shifts the equilibrium to the formation of nitrobenzene ... [Pg.278]

Nitration of toluene is the only important reaction that involves the aromatic ring rather than the aliphatic methyl group. The nitration reaction occurs with an electrophilic substitution hy the nitronium ion. The reaction conditions are milder than those for henzene due to the activation of the ring hy the methyl substituent. A mixture of nitrotoluenes results. The two important monosubstituted nitrotoluenes are o- and p-nitrotoluenes ... [Pg.292]

Figure 24.6 Electrophilic nitration of pyrrole. The intermediate produced by reaction at C2 is more stable than that produced by reaction at C3. Figure 24.6 Electrophilic nitration of pyrrole. The intermediate produced by reaction at C2 is more stable than that produced by reaction at C3.
Not only are there substrates for which the treatment is poor, but it also fails with very powerful electrophiles this is why it is necessary to postulate the encounter complex mentioned on page 680. For example, relative rates of nitration of p-xylene, 1,2,4-trimethylbenzene, and 1,2,3,5-tetramethylbenzene were 1.0, 3.7, and 6.4, though the extra methyl groups should enhance the rates much more (p-xylene itself reacted 295 times faster than benzene). The explanation is that with powerful electrophiles the reaction rate is so rapid (reaction taking place at virtually every encounter between an electrophile and substrate molecule) that the presence of additional activating groups can no longer increase the rate. ... [Pg.694]

Recently, nitration of organolithiums and Grignards with N204 has been developed for the preparation of certain kinds of nitro compounds (Eqs. 2.14 and 2.15).31 The success of this process depends on the reaction conditions (low temperature) and the structure of substrates. For example, 3-nitrothiophene can be obtained in 70% overall yield from 3-bromothiophene this is far superior to the older method. 3-Nitroveratrole cannot be prepared usefully by classical electrophilic nitration of veratrole, but it can now be prepared by direct o>7/ o-lithiation followed by low-temperature N204 nitration. The mechanism is believed to proceed by dinitrogen tetroxide oxidation of the anion to a radical, followed by the radical s combination. [Pg.7]

The nitration of active methylene compounds generally proceeds via the reaction of carbanionic intermediates with an electrophilic nitrating agent such as alkyl nitrate (alkyl nitrate nitration). Details of this process are well documented in the reviews.38 The alkyl nitrate nitration method has been used extensively for the preparation of arylnitromethanes. The toluene derivatives, which have electron-withdrawing groups are nitrated with alkyl nitrates in the presence of KNH2 in liquid ammonia (Eqs. 2.19 and 2.20).39... [Pg.10]

Aromatic nitrosation with nitrosonium (NO + ) cation - unlike electrophilic nitration with nitronium (NO ) cation - is restricted to very reactive (electron-rich) substrates such as phenols and anilines.241 Electrophilic nitrosation with NO+ is estimated to be about 14 orders of magnitude less effective than nitration with N02+. 242 Such an unusually low reactivity of NO+ toward aromatic donors (as compared to that of NO ) is not a result of the different electron-acceptor strengths of these cationic acceptors since their (reversible) electrochemical reduction potentials are comparable. In order to pinpoint the origin of such a reactivity difference, let us examine the nitrosation reaction in the light of the donor-acceptor association and the electron-transfer paradigm as follows. [Pg.287]


See other pages where Electrophilic Nitration Reactions is mentioned: [Pg.1]    [Pg.315]    [Pg.258]    [Pg.1]    [Pg.315]    [Pg.258]    [Pg.91]    [Pg.321]    [Pg.329]    [Pg.139]    [Pg.258]    [Pg.85]    [Pg.85]    [Pg.566]    [Pg.21]    [Pg.191]    [Pg.681]    [Pg.56]    [Pg.86]    [Pg.7]    [Pg.200]    [Pg.200]    [Pg.297]    [Pg.358]    [Pg.241]    [Pg.949]    [Pg.950]    [Pg.1177]   


SEARCH



Electrophilic nitration

Nitration reaction

© 2024 chempedia.info