Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic aromatic substitution substituents

Displacements such as this show all the usual characteristics of electrophilic aromatic substitution (substituent effects, etc., see below), but they are normally of much less preparative significance than the examples we have already considered. In face of all the foregoing discussion of polar intermediates it is pertinent to point out that homolytic aromatic substitution reactions, i.e. by radicals, are also known (p. 331) as too is attack by nucleophiles (p. 167). [Pg.149]

There were two schools of thought concerning attempts to extend Hammett s treatment of substituent effects to electrophilic substitutions. It was felt by some that the effects of substituents in electrophilic aromatic substitutions were particularly susceptible to the specific demands of the reagent, and that the variability of the polarizibility effects, or direct resonance interactions, would render impossible any attempted correlation using a two-parameter equation. - o This view was not universally accepted, for Pearson, Baxter and Martin suggested that, by choosing a different model reaction, in which the direct resonance effects of substituents participated, an equation, formally similar to Hammett s equation, might be devised to correlate the rates of electrophilic aromatic and electrophilic side chain reactions. We shall now consider attempts which have been made to do this. [Pg.137]

The applicability of the two-parameter equation and the constants devised by Brown to electrophilic aromatic substitutions was tested by plotting values of the partial rate factors for a reaction against the appropriate substituent constants. It was maintained that such comparisons yielded satisfactory linear correlations for the results of many electrophilic substitutions, the slopes of the correlations giving the values of the reaction constants. If the existence of linear free energy relationships in electrophilic aromatic substitutions were not in dispute, the above procedure would suffice, and the precision of the correlation would measure the usefulness of the p+cr+ equation. However, a point at issue was whether the effect of a substituent could be represented by a constant, or whether its nature depended on the specific reaction. To investigate the effect of a particular substituent in different reactions, the values for the various reactions of the logarithms of the partial rate factors for the substituent were plotted against the p+ values of the reactions. This procedure should show more readily whether the effect of a substituent depends on the reaction, in which case deviations from a hnear relationship would occur. It was concluded that any variation in substituent effects was random, and not a function of electron demand by the electrophile. ... [Pg.139]

In addition to benzene and naphthalene derivatives, heteroaromatic compounds such as ferrocene[232, furan, thiophene, selenophene[233,234], and cyclobutadiene iron carbonyl complexpSS] react with alkenes to give vinyl heterocydes. The ease of the reaction of styrene with sub.stituted benzenes to give stilbene derivatives 260 increases in the order benzene < naphthalene < ferrocene < furan. The effect of substituents in this reaction is similar to that in the electrophilic aromatic substitution reactions[236]. [Pg.56]

What IS the effect of a substituent on the rate of electrophilic aromatic substitution s... [Pg.488]

Just as there is a marked difference m how methyl and tnfluoromethyl substituents affect the rate of electrophilic aromatic substitution so too there is a marked difference m how they affect its regioselectivity... [Pg.488]

Why IS there such a marked difference between methyl and trifluoromethyl substituents m their influence on electrophilic aromatic substitution s Methyl is activating and ortho para directing trifluoromethyl is deactivating and meta directing The first point to remember is that the regioselectivity of substitution is set once the cyclohexadienyl cation intermediate is formed If we can explain why... [Pg.489]

SUBSTITUENT EFFECTS IN ELECTROPHILIC AROMATIC SUBSTITUTION ACTIVATING SUBSTITUENTS... [Pg.494]

Substituent Effects in Electrophilic Aromatic Substitution Activating Substituents... [Pg.495]

Classification of Substituents in Electrophilic Aromatic Substitution Reactions... [Pg.495]

Because the carbon atom attached to the ring is positively polarized a carbonyl group behaves m much the same way as a trifluoromethyl group and destabilizes all the cyclo hexadienyl cation intermediates m electrophilic aromatic substitution reactions Attack at any nng position m benzaldehyde is slower than attack m benzene The intermediates for ortho and para substitution are particularly unstable because each has a resonance structure m which there is a positive charge on the carbon that bears the electron withdrawing substituent The intermediate for meta substitution avoids this unfavorable juxtaposition of positive charges is not as unstable and gives rise to most of the product... [Pg.498]

Returning to Table 12 2 notice that halogen substituents direct an incoming electrophile to the ortho and para positions but deactivate the ring toward substitution Nitration of chlorobenzene is a typical example of electrophilic aromatic substitution m a halobenzene... [Pg.500]

Sometimes the orientation of two substituents m an aromatic compound precludes Its straightforward synthesis m Chloroethylbenzene for example has two ortho para directing groups m a meta relationship and so can t be prepared either from chloroben zene or ethylbenzene In cases such as this we couple electrophilic aromatic substitution with functional group manipulation to produce the desired compound... [Pg.505]

Section 12 15 When two or more substituents are present on a nng the regioselectiv ity of electrophilic aromatic substitution is generally controlled by the directing effect of the more powerful activating substituent... [Pg.512]

Arylamines contain two functional groups the amine group and the aromatic ring they are difunctional compounds The reactivity of the amine group is affected by its aryl substituent and the reactivity of the ring is affected by its amine substituent The same electron delocalization that reduces the basicity and the nucleophilicity of an arylamme nitrogen increases the electron density in the aromatic ring and makes arylamines extremely reactive toward electrophilic aromatic substitution... [Pg.939]

Electrophilic aromatic substitution (Section 12 14) Halo gen substituents are slightly deactivating and ortho para directing Br... [Pg.974]

A nitro group behaves the same way m both reactions it attracts electrons Reaction is retarded when electrons flow from the aromatic ring to the attacking species (electrophilic aromatic substitution) Reaction is facilitated when electrons flow from the attacking species to the aromatic ring (nucleophilic aromatic substitution) By being aware of the connection between reactivity and substituent effects you will sharpen your appreciation of how chemical reactions occur... [Pg.980]

The hydroxyl group of a phenol is a strongly activating substituent and electrophilic aromatic substitution occurs readily m phenol and its deriv atives Typical examples were presented m Table 24 4... [Pg.1017]

Deactivating substituent (Sections 12 11 and 12 13) A group that when present in place of hydrogen causes a particular reaction to occur more slowly The term is most often ap plied to the effect of substituents on the rate of electrophilic aromatic substitution... [Pg.1280]

Diazo coupling follows the rules of orientation of substituents in aromatic systems in accordance with the mechanism of electrophilic aromatic substitution and the concept of resonance. [Pg.428]

We will address this issue further in Chapter 10, where the polar effects of the substituents on both the c and n electrons will be considered. For the case of electrophilic aromatic substitution, where the energetics of interaction of an approaching electrophile with the 7t system determines both the rate of reaction and position of substitution, simple resonance arguments are extremely useful. [Pg.13]


See other pages where Electrophilic aromatic substitution substituents is mentioned: [Pg.509]    [Pg.509]    [Pg.516]    [Pg.477]    [Pg.477]    [Pg.523]    [Pg.764]    [Pg.496]    [Pg.509]    [Pg.509]    [Pg.516]    [Pg.477]    [Pg.477]    [Pg.523]    [Pg.764]    [Pg.496]    [Pg.493]    [Pg.502]    [Pg.503]    [Pg.979]    [Pg.1004]    [Pg.1277]    [Pg.258]    [Pg.426]    [Pg.39]    [Pg.39]    [Pg.81]    [Pg.218]   
See also in sourсe #XX -- [ Pg.708 ]




SEARCH



Aromatic substituent

Aromatic substituents

Aromaticity electrophilic aromatic substitution

Aromatics electrophilic substitution

Electrophile Electrophilic aromatic substitution

Electrophilic substitution substituents

Substituents Substitution

Substituents electrophilic

Substituted substituents

Substitution aromatic substituents

Substitution electrophilic aromatic

Substitution electrophilic aromatic substitutions

© 2024 chempedia.info