Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic addition proton

We can extend the general principles of electrophilic addition to acid catalyzed hydration In the first step of the mechanism shown m Figure 6 9 proton transfer to 2 methylpropene forms tert butyl cation This is followed m step 2 by reaction of the car bocation with a molecule of water acting as a nucleophile The aUcyloxomum ion formed m this step is simply the conjugate acid of tert butyl alcohol Deprotonation of the alkyl oxonium ion m step 3 yields the alcohol and regenerates the acid catalyst... [Pg.247]

Electrophile Addition Reactions. The addition of electrophilic (acidic) reagents HZ to propylene involves two steps. The first is the slow transfer of the hydrogen ion (proton) from one base to another, ie, from Z to the propylene double bond, to form a carbocation. The second is a rapid combination of the carbocation with the base, Z . The electrophile is not necessarily limited to a Lowry-Briiinsted acid, which has a proton to transfer, but can be any electron-deficient molecule (Lewis acid). [Pg.124]

A mercurinium ion has both similarities and differences as compared with the intermediates that have been described for other electrophilic additions. The proton that initiates acid-catalyzed addition processes is a hard acid and has no imshared electrons. It can form either a carbocation or a hydrogen-bridged cation. Either species is electron-deficient and highly reactive. [Pg.370]

Electrophilic additions to allenes represent an interesting reaction type which is related to additions to both alkenes and alkynes. An allene could, for example, conceivably be protonated at either a terminal s[p- carbon or the central sp carbon. [Pg.376]

The regioselectivity of addition of HBr to alkenes under nonnal (electrophilic addition) conditions is controlled by the tendency of a proton to add to the double bond so as to produce the more stable carbocation. Under free-radical conditions the regioselectivity is governed by addition of a bromine atom to give the more stable alkyl radical. [Pg.244]

A hypsochromic shift of 20-50 cm is observed in the double-bond stretching region, when the enamines are converted to the corresponding iminium salts by the electrophilic addition of a proton at the /3-carbon atom. The shift is accompanied by an enhancement in the intensity of the band. Leonard and co-workers (68,71-74) have used this absorption shift as a diagnostic tool for the determination of the position of the double bond... [Pg.39]

Electrophilic addition of HX to an alkene involves a two-step mechanism, the overall rate being given by the rate of the initial protonation step. Differences in protonation energies are usually explained by considering differences in carbocation stability, but the relief or buildup of strain can also be a factor. One of the following alkenes protonates much more easily than the other. [Pg.105]

Both cis and tran -cyclohexene have been synthesized, but only one of them can be isolated. Electrophilic addition of ROH to one isomer occurs spontaneously, while addition to the other isomer occurs only in the presence of a strong acid, such as sulfuric acid. Calculate the energy of protonation for each isomer cyclohexene protonated cyclohexene, trans-cyclohexene protonated trans-cyclohexene), and identify the more reactive isomer. Also examine electrostatic potential maps. Suggest an explanation to account for both the reactivity difference and the structural changes. (See also Chapter 7, Problem 5.)... [Pg.105]

In addition to electrophilic attack on the pyrrole ring in indole, there is the possibility for additions to the fused benzene ring. First examine the highest-occupied molecular orbital (HOMO) of indole. Which atoms contribute the most What should be the favored position for electrophilic attack Next, compare the energies of the various protonated forms of indole (C protonated only). These serve as models for adducts formed upon electrophilic addition. Which carbon on the pyrrole ring (C2 or C3) is favored for protonation Is this the same as the preference in pyrrole itself (see Chapter 15, Problem 2)1 If not, try to explain why not. Which of the carbons on the benzene ring is most susceptible to protonation Rationalize your result based on what you know about the reactivity of substituted benzenes toward electrophiles. Are any of the benzene carbons as reactive as the most reactive pyrrole carbon Explain. [Pg.216]

Various side-reactions may complicate the course of the Nef reaction. Because of the delocalized negative charge, the nitronate anion 2 can react at various positions with an electrophile addition of a proton at the a-carbon reconstitutes the starting nitro alkane. 1. The nitrite anion can act as leaving group, thus leading to elimination products. [Pg.211]

How does the Hammond postulate apply to electrophilic addition reactions The formation of a catbocation by protonation of an alkene is an endergonic step. Thus, the transition state for alkene protonation structurally resembles the... [Pg.198]

Electrophilic addition of HCJ to a conjugated diene involves the formation of allylic carbocation intermediates. Thus, the first step is to protonate the two ends of the diene and draw the resonance forms of the two allylic carbocations that result. Then... [Pg.488]

The second part of lanosterol biosynthesis is catalyzed by oxidosqualene lanosterol cyclase and occurs as shown in Figure 27.14. Squalene is folded by the enzyme into a conformation that aligns the various double bonds for undergoing a cascade of successive intramolecular electrophilic additions, followed by a series of hydride and methyl migrations. Except for the initial epoxide protonation/cyclization, the process is probably stepwise and appears to involve discrete carbocation intermediates that are stabilized by electrostatic interactions with electron-rich aromatic amino acids in the enzyme. [Pg.1085]

Protonation on oxygen opens the epoxide ring and gives a tertiary carbocation at C4. Intramolecular electrophilic addition of C4 to the 5,10 double bond then yields a tertiary monocyclic carbocation at C10. [Pg.1086]

Just the reverse trend characterizes fc2. This reaction is aided by electron donation to the carbonyl carbon, as would be expected if the mechanism consists of electrophilic addition of the proton to the OH group. The reaction constant is p = -1.74. [Pg.227]

The primary attack of an electrophile takes place during both the electrophilic addition to olefines and the cationic polymerization resulting in the formation of a car-benium ion R—C+H—CH3 as a reactive intermediate from the olefine or monomer R—CH=CH2 72) (Eq. 16). In the simplest of cases, the electrophile is a proton. [Pg.206]

If the carbanion has even a short lifetime, 6 and 7 will assume the most favorable conformation before the attack of W. This is of course the same for both, and when W attacks, the same product will result from each. This will be one of two possible diastereomers, so the reaction will be stereoselective but since the cis and trans isomers do not give rise to different isomers, it will not be stereospecific. Unfortunately, this prediction has not been tested on open-chain alkenes. Except for Michael-type substrates, the stereochemistry of nucleophilic addition to double bonds has been studied only in cyclic systems, where only the cis isomer exists. In these cases, the reaction has been shown to be stereoselective with syn addition reported in some cases and anti addition in others." When the reaction is performed on a Michael-type substrate, C=C—Z, the hydrogen does not arrive at the carbon directly but only through a tautomeric equilibrium. The product naturally assumes the most thermodynamically stable configuration, without relation to the direction of original attack of Y. In one such case (the addition of EtOD and of Me3CSD to tra -MeCH=CHCOOEt) predominant anti addition was found there is evidence that the stereoselectivity here results from the final protonation of the enolate, and not from the initial attack. For obvious reasons, additions to triple bonds cannot be stereospecific. As with electrophilic additions, nucleophilic additions to triple bonds are usually stereoselective and anti, though syn addition and nonstereoselective addition have also been reported. [Pg.977]

This is ordinary electrophilic addition, with rate-determining protonation as the first... [Pg.995]

The formation of any vinyl products in electrophilic additions to RCH=C=CH2 and RCH=C=CHR is surprising, since central protonation should yield a secondary carbonium ion compared to terminal protonation and formation of a vinyl cation. Perhaps a secondary carbonium ion destabilized by... [Pg.221]

In contrast to the behavior of tetramethylallene, allene 38 undergoes central protonation in electrophilic additions. In an acetic acid sulfuric acid... [Pg.222]

Both allenes141 and alkynes142 require special consideration with regard to mechanisms of electrophilic addition. The attack by a proton on allene might conceivably lead to the allyl cation or the 2-propenyl cation. [Pg.333]

Addition of electrophiles to a coordinated benzenoid ligand is a characteristic reaction of 20-e complexes. [Co(C5H5BPh)2] in 59 is readily protonated at C-2, producing complex 79 (60) which alternatively can be obtained by hydride addition to cation 61 (69). Formal electrophilic addition is also observed in the reaction of [Co(C5H5BMe)2] in 58 with Phi which affords the two isomeric phenylation products 80 and 81 (60). [Pg.230]


See other pages where Electrophilic addition proton is mentioned: [Pg.258]    [Pg.251]    [Pg.258]    [Pg.251]    [Pg.405]    [Pg.370]    [Pg.376]    [Pg.405]    [Pg.112]    [Pg.466]    [Pg.3]    [Pg.25]    [Pg.129]    [Pg.305]    [Pg.188]    [Pg.222]    [Pg.264]    [Pg.368]    [Pg.32]    [Pg.64]    [Pg.216]    [Pg.222]    [Pg.262]    [Pg.66]    [Pg.53]    [Pg.289]    [Pg.156]    [Pg.132]    [Pg.220]   
See also in sourсe #XX -- [ Pg.103 , Pg.184 , Pg.187 ]

See also in sourсe #XX -- [ Pg.103 , Pg.184 , Pg.187 ]




SEARCH



Electrophiles protonation

Proton addition

© 2024 chempedia.info