Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrons reducing equivalent

In this automatically coupled process, four molecules of ribulose bisphosphate are converted to six of phosphoglyceric acid plus two of bicarbonate. Three of the 2-electron reducing equivalents (6[H]) are required for nitrite reduction via photosystem I and ferredoxin and three further such equivalents for a re-iterated process of glutamate synthesis involving successive returns of diminishing amounts... [Pg.2798]

The electrons undergo the equivalent of a partial oxidation process ia a dark reaction to a positive potential of +0.4 V, and Photosystem I then raises the potential of the electrons to as high as —0.7 V. Under normal photosynthesis conditions, these electrons reduce tryphosphopyridine-nucleotide (TPN) to TPNH, which reduces carbon dioxide to organic plant material. In the biophotolysis of water, these electrons are diverted from carbon dioxide to a microbial hydrogenase for reduction of protons to hydrogen ... [Pg.19]

Electron Transport Between Photosystem I and Photosystem II Inhibitors. The interaction between PSI and PSII reaction centers (Fig. 1) depends on the thermodynamically favored transfer of electrons from low redox potential carriers to carriers of higher redox potential. This process serves to communicate reducing equivalents between the two photosystem complexes. Photosynthetic and respiratory membranes of both eukaryotes and prokaryotes contain stmctures that serve to oxidize low potential quinols while reducing high potential metaHoproteins (40). In plant thylakoid membranes, this complex is usually referred to as the cytochrome b /f complex, or plastoquinolplastocyanin oxidoreductase, which oxidizes plastoquinol reduced in PSII and reduces plastocyanin oxidized in PSI (25,41). Some diphenyl ethers, eg, 2,4-dinitrophenyl 2 -iodo-3 -methyl-4 -nitro-6 -isopropylphenyl ether [69311-70-2] (DNP-INT), and the quinone analogues,... [Pg.40]

The substrates of catabolism—proteins, carbohydrates, and lipids—are good sources of chemical energy because the carbon atoms in these molecules are in a relatively reduced state (Figure 18.9). In the oxidative reactions of catabolism, reducing equivalents are released from these substrates, often in the form of hydride ions (a proton coupled with two electrons, H ). These hydride ions are transferred in enzymatic dehydrogenase reactions from the substrates... [Pg.577]

In green plants, water serves as the ultimate electron donor for the photosynthetic generation of reducing equivalents. The reaction sequence... [Pg.712]

FIGURE 25.1 The citrate-malate-pyruvate shuttle provides cytosolic acetate units and reducing equivalents (electrons) for fatty acid synthesis. The shuttle collects carbon substrates, primarily from glycolysis but also from fatty acid oxidation and amino acid catabolism. Most of the reducing equivalents are glycolytic in origin. Pathways that provide carbon for fatty acid synthesis are shown in blue pathways that supply electrons for fatty acid synthesis are shown in red. [Pg.804]

NADPH can be produced in the pentose phosphate pathway as well as by malic enzyme (Figure 25.1). Reducing equivalents (electrons) derived from glycolysis in the form of NADH can be transformed into NADPH by the combined action of malate dehydrogenase and malic enzyme ... [Pg.805]

Most of the energy liberated during the oxidation of carbohydrate, fatty acids, and amino acids is made available within mitochondria as reducing equivalents (—H or electrons) (Figure 12-2). Mitochondria contain the respiratory chain, which collects and transports reducing equivalents directing them to their final reaction with oxygen to form water, the machinery for... [Pg.92]

Deprived of their substrate in severe or prolonged hypoxia, some ATPase-driven systems, including ion pumps, may become impaired. Further, with the decrease in the availability of O2 as its terminal electron acceptor, the mitochondrial transport chain becomes increasingly unable to accept reducing equivalents from cellular metabolic processes. Hence the intracellular pH falls, subjecting the cell as a whole to a reductive stress and favouring those enzyme systems with acid pH optima. [Pg.100]

The role of the iron-sulphur system of xanthine oxidase in the catalytic reaction is somewhat problematical. Nevertheless, it is clear, both from rapid freezing EPR (53) and from stopped-flow measurements monitored optically at 450 nm (58, 63) (where both iron and flavin are measured), that iron is reduced and oxidized at catalytically significant rates. Perhaps the best interpretation is that it functions as a store for reducing equivalents within the enzyme when this is acting as an oxidase, though it may well represent the main site of electron egress in dehydrogenase reactions (52). [Pg.117]

A redox reaction is a special case of the equilibrium reaction of A + B in Equation 13.1 B is now a reducible group in a biomolecule with an EPR spectrum either in its oxidized or in its reduced state (or both), and A is now an electron or a pair of electrons, that is, reducing equivalents provided by a natural redox partner (a reductive substrate, a coenzyme such as NADH, a protein partner such as cytochrome c), or by a chemical reductant (dithionite), or even by a solid electrode ... [Pg.215]

The MALATE-ASPARTATE SHUTTLE gets reducing equivalents (electrons) from cytosolic NADH into the mitochondria so that 3 ATPs can be made. [Pg.190]

The P/O ratio is the number of ATPs made for each O atom consumed by mitochondrial respiration. The P stands for high-energy phosphate equivalents, and the O actually stands for the number of I 02 s that are consumed by the electron transport chain. The full reduction of 02 to 2 H20 takes 4 electrons. Therefore, 2 electrons reduce of an 02. The oxidation of NADH to NAD and the oxidation of FADH2 to FAD are both 2-electron oxidations. O can be read as the transfer of 2 electrons. It s not quite as obscure as it sounds.2... [Pg.191]


See other pages where Electrons reducing equivalent is mentioned: [Pg.351]    [Pg.89]    [Pg.27]    [Pg.108]    [Pg.351]    [Pg.89]    [Pg.27]    [Pg.108]    [Pg.578]    [Pg.579]    [Pg.641]    [Pg.373]    [Pg.307]    [Pg.14]    [Pg.348]    [Pg.87]    [Pg.93]    [Pg.302]    [Pg.218]    [Pg.643]    [Pg.645]    [Pg.274]    [Pg.421]    [Pg.115]    [Pg.139]    [Pg.142]    [Pg.115]    [Pg.212]    [Pg.213]    [Pg.241]    [Pg.213]    [Pg.186]    [Pg.153]    [Pg.160]    [Pg.166]    [Pg.77]    [Pg.194]    [Pg.9]    [Pg.10]    [Pg.52]    [Pg.64]    [Pg.67]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Equivalent electrons

Reducing equivalents

© 2024 chempedia.info