Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrons Pauli exclusion principle

Each orbital is allowed a maximum of two electrons (Pauli exclusion principle). [Pg.4]

In general, it is not possible to localise electrons at a certain point i. e., their position is not defined. It is only possible to know the probability that an electron is situated at a certain point if one tries to find it there. This probability varies in space, so there are some regions near the nucleus where the electron will be located preferentially, whereas it avoids others. The region where the electron can be found is called the orbital. Figure 1.1 shows some examples of such orbitals. As can be seen from the figure, orbitals can be spherically symmetric or directed. An electron shell usually comprises several orbitals. Each orbital can be occupied by no more than two electrons Pauli exclusion principle). [Pg.3]

Pauli exclusion principle In any atom no two electrons can have all four quantum numbers the same. See exclusion principle. [Pg.297]

The resolution of this issue is based on the application of the Pauli exclusion principle and Femii-Dirac statistics. From the free electron model, the total electronic energy, U, can be written as... [Pg.128]

Because single-electron wave functions are approximate solutions to the Schroe-dinger equation, one would expect that a linear combination of them would be an approximate solution also. For more than a few basis functions, the number of possible lineal combinations can be very large. Fortunately, spin and the Pauli exclusion principle reduce this complexity. [Pg.255]

In addition to being negatively charged electrons possess the property of spin The spin quantum number of an electron can have a value of either +5 or According to the Pauli exclusion principle, two electrons may occupy the same orbital only when... [Pg.8]

Pauli exclusion principle (Section 1 1) No two electrons can have the same set of four quantum numbers An equivalent expression is that only two electrons can occupy the same orbital and then only when they have opposite spins PCC (Section 15 10) Abbreviation for pyndimum chlorochro mate C5H5NH" ClCr03 When used in an anhydrous medium PCC oxidizes pnmary alcohols to aldehydes and secondary alcohols to ketones... [Pg.1290]

Because of the quantum mechanical Uncertainty Principle, quantum mechanics methods treat electrons as indistinguishable particles. This leads to the Pauli Exclusion Principle, which states that the many-electron wave function—which depends on the coordinates of all the electrons—must change sign whenever two electrons interchange positions. That is, the wave function must be antisymmetric with respect to pair-wise permutations of the electron coordinates. [Pg.34]

Again, for the filled orbitals L = 0 and 5 = 0, so we have to consider only the 2p electrons. Since n = 2 and f = 1 for both electrons the Pauli exclusion principle is in danger of being violated unless the two electrons have different values of either or m. For non-equivalent electrons we do not have to consider the values of these two quantum numbers because, as either n or f is different for the electrons, there is no danger of violation. [Pg.210]

Intrinsic Semiconductors. For semiconductors in thermal equiHbrium, (Ai( )), the average number of electrons occupying a state with energy E is governed by the Fermi-Dirac distribution. Because, by the Pauli exclusion principle, at most one electron (fermion) can occupy a state, this average number is also the probabiHty, P E), that this state is occupied (see Fig. 2c). In equation 2, K... [Pg.345]

Electrons act as if they were spinning around an axis, in much the same way that the earth spins. This spin can have two orientations, denoted as up T and down i. Only two electrons can occupy an orbital, and they must be of opposite spin, a statement called the Pauli exclusion principle. [Pg.6]

Pauli exclusion principle (Section 1.3) No more than two electrons can occupy the same orbital, and those two must have spins of opposite sign. [Pg.1247]

The four quantum numbers that characterize an electron in an atom have now been considered. There is an important rule, called the Pauli exclusion principle, that relates to these numbers. It requires that no two electrons in an atom can have the same set of four quan-... [Pg.141]

The Pauli exclusion principle has an implication that is not obvious at first glance. It requires that only two electrons can fit into an orbital, since there are only two possible values of m,. Moreover, if two electrons occupy the same orbital, they must have opposed spins. Otherwise they would have the same set of four quantum numbers. [Pg.142]

Hund s rule, like the Pauli exclusion principle, is based on experiment It is possible to determine the number of unpaired electrons in an atom. With solids, this is done by studying their behavior in a magnetic field. If there are unpaired electrons present the solid will be attracted into the field. Such a substance is said to be paramagnetic. If the atoms in the solid contain only paired electrons, it is slightly repelled by the field. Substances of this type are called diamagnetic. With gaseous atoms, the atomic spectrum can also be used to establish the presence and number of unpaired electrons. [Pg.149]

The fundamental laws which determine the behavior of an electronic system are the Schrodinger equation (Eq. II. 1) and the Pauli exclusion principle expressed in the form of the antisymmetry requirement (Eq. II.2). We note that even the latter auxiliary condition introduces a certain correlation between the movements of the electrons. [Pg.217]

The wave function, constructed from the atomic orbitals must be antisymmetric with respect to interchange of electrons in order to satisfy the Pauli exclusion principle, having different spin quantum numbers (a and J3) for two electrons which are in the same orbital. [Pg.3]

The spins of two electrons are said to be paired if one is T and the other 1 (Fig. 1.43). Paired spins are denoted Tl, and electrons with paired spins have spin magnetic quantum numbers of opposite sign. Because an atomic orbital is designated by three quantum numbers (n, /, and mt) and the two spin states are specified by a fourth quantum number, ms, another way of expressing the Pauli exclusion principle for atoms is... [Pg.158]

Electrons occupy orbitals in such a way as to minimize the total energy of an atom by maximizing attractions and minimizing repulsions in accord with the Pauli exclusion principle and Hund s rule. [Pg.161]

Add Z electrons, one after the other, to the orbitals in the order shown in Figs. 1.41 and 1.44 but with no more than two electrons in any one orbital (the Pauli exclusion principle). [Pg.161]

We account for the ground-state electron configuration of an atom by using the building-up principle in conjunction with Fig. 1.41, the Pauli exclusion principle, and Hund s rule. [Pg.161]

According to the Pauli exclusion principle, each molecular orbital can accommodate up to two electrons. If two electrons are present in one orbital, they must be paired. [Pg.241]

Pauli exclusion principle See exclusion principle. p-clcctron An electron in a p-orbital. penetration The possibility that an s-electron may be found inside the inner shells of an atom and hence close to the nucleus. [Pg.961]

The observed structure of the spectra of many-electron atoms is entirely accounted for by the following postulate Only eigenfunctions which are antisymmetric in the electrons , that is, change sign when any two electrons are interchanged, correspond to existant states of the system. This is the quantum mechanics statement (26) of the Pauli exclusion principle (43). [Pg.57]

The application of the quantum mechanics to the interaction of more complicated atoms, and to the non-polar chemical bond in general, is now being made (45). A discussion of this work can not be given here it is, however, worthy of mention that qualitative conclusions have been drawn which are completely equivalent to G. N. Lewis s theory of the shared electron pair. The further results which have so far been obtained are promising and we may look forward with some confidence to the future explanation of chemical valence in general in terms of the Pauli exclusion principle and the Heisenberg-Dirac resonance phenomenon. [Pg.60]

Introduction of the half-integral spin of the electrons (values h/2 and —fe/2) alters the above discussion only in that a spin coordinate must now be added to the wavefunctions which would then have both space and spin components. This creates four vectors (three space and one spin component). Application of the Pauli exclusion principle, which states that all wavefunctions must be antisymmetric in space and spin coordinates for all pairs of electrons, again results in the T-state being of lower energy [equations (9) and (10)]. [Pg.63]

Named for the Austrian physicist Wolfgang Pauli (1900-1958), this principle can be derived from the mathematics of quantum mechanics, but it cannot be rationalized in a simple way. Nevertheless, all experimental evidence upholds the idea. When one electron in an atom has a particular set of quantum numbers, no other electron in the atom is described by that same set. There are no exceptions to the Pauli exclusion principle. [Pg.514]


See other pages where Electrons Pauli exclusion principle is mentioned: [Pg.152]    [Pg.30]    [Pg.32]    [Pg.175]    [Pg.429]    [Pg.2048]    [Pg.569]    [Pg.201]    [Pg.10]    [Pg.141]    [Pg.177]    [Pg.15]    [Pg.158]    [Pg.159]    [Pg.241]    [Pg.19]    [Pg.37]    [Pg.3]    [Pg.514]   
See also in sourсe #XX -- [ Pg.30 ]

See also in sourсe #XX -- [ Pg.225 , Pg.243 ]

See also in sourсe #XX -- [ Pg.392 , Pg.393 , Pg.394 , Pg.395 , Pg.396 , Pg.428 , Pg.540 , Pg.541 , Pg.544 , Pg.549 , Pg.644 , Pg.645 , Pg.646 ]




SEARCH



Electron configuration Pauli exclusion principle

Electron configuration Pauli exclusion principle and

Electron correlation calculations Pauli exclusion principle

Electron principle

Electron shells Pauli Exclusion Principle

Electron spin Pauli exclusion principle

Electron spin and the Pauli exclusion principle

Electronic configuration. Pauli exclusion principle

Electrons Pauli principle

Exclusion Principle, Pauli

Exclusion principle

Many-electron atoms Pauli exclusion principle

Pauli Exclusion Principle No two electrons

Pauli exclusion

Pauli exclusion principl

Pauli exclusion principle, electronic structure

Pauli exclusion principle, electronic structure calculations

Pauli principle

Pauly

Principles Pauli principle

© 2024 chempedia.info