Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic wave function, permutational

Wigner rotation/adiabatic-to-diabatic transformation matrices, 92 Electronic structure theory, electron nuclear dynamics (END) structure and properties, 326-327 theoretical background, 324-325 time-dependent variational principle (TDVP), general nuclear dynamics, 334-337 Electronic wave function, permutational symmetry, 680-682 Electron nuclear dynamics (END) degenerate states chemistry, xii-xiii direct molecular dynamics, structure and properties, 327 molecular systems, 337-351 final-state analysis, 342-349 intramolecular electron transfer,... [Pg.76]

IT. Total Molecular Wave Functdon TIT. Group Theoretical Considerations TV. Permutational Symmetry of Total Wave Function V. Permutational Symmetry of Nuclear Spin Function VT. Permutational Symmetry of Electronic Wave Function VIT. Permutational Symmetry of Rovibronic and Vibronic Wave Functions VIIT. Permutational Symmetry of Rotational Wave Function IX. Permutational Symmetry of Vibrational Wave Function X. Case Studies Lis and Other Systems... [Pg.551]

Let us examine a special but more practical case where the total molecular Hamiltonian, H, can be separated to an electronic part, W,.(r,s Ro), as is the case in the usual BO approximation. Consequendy, the total molecular wave function fl(R, i,r,s) is given by the product of a nuclear wave function X uc(R, i) and an electronic wave function v / (r, s Ro). We may then talk separately about the permutational properties of the subsystem consisting of electrons, and the subsystemfs) formed of identical nuclei. Thus, the following commutative laws Pe,Hg =0 and =0 must be satisfied X =... [Pg.568]

As pointed out in the previous paragraph, the total wave function of a molecule consists of an electronic and a nuclear parts. The electrons have a different intrinsic nature from nuclei, and hence can be treated separately when one considers the issue of permutational symmetry. First, let us consider the case of electrons. These are fermions with spin and hence the subsystem of electrons obeys the Fermi-Dirac statistics the total electronic wave function... [Pg.568]

In this section, we extend the above discussion to the isotopomers of X3 systems, where X stands for an alkali metal atom. For the lowest two electronic states, the permutational properties of the electronic wave functions are similar to those of Lij. Their potential energy surfaces show that the baniers for pseudorotation are very low [80], and we must regard the concerned particles as identical. The Na atom has a nuclear spin " K, and K have nuclear... [Pg.604]

In Chapter VIII, Haas and Zilberg propose to follow the phase of the total electronic wave function as a function of the nuclear coordinates with the aim of locating conical intersections. For this purpose, they present the theoretical basis for this approach and apply it for conical intersections connecting the two lowest singlet states (Si and So). The analysis starts with the Pauli principle and is assisted by the permutational symmetry of the electronic wave function. In particular, this approach allows the selection of two coordinates along which the conical intersections are to be found. [Pg.770]

Because of the quantum mechanical Uncertainty Principle, quantum m echanics methods treat electrons as indistinguishable particles, This leads to the Paiili Exclusion Pnn ciple, which states that the many-electron wave function—which depends on the coordinates of all the electrons—must change sign whenever two electrons interchange positions. That IS, the wave function must be antisymmetric with respect to pair-wise permutations of the electron coordinates. [Pg.34]

Generalize the solution of Exercise 9-1 to the case of a many-electron wave function [Eq. (9-29)] yielding Pm permutations. [Pg.272]

Planar molecules, permutational symmetry electronic wave function, 681-682 rotational wave function, 685-687 vibrational wave function, 687-692... [Pg.92]

The second mechanism, due to the permutational properties of the electronic wave function is referred to as the permutational mechanism. It was introduced in Section I for the H4 system, and above for pericyclic reactions and is closely related to the aromaticity of the reaction. Following Evans principle, an aromatic transition state is defined in analogy with the hybrid of the two Kekule structures of benzene. A cyclic transition state in pericyclic reactions is defined as aromatic or antiaromatic according to whether it is more stable or less stable than the open chain analogue, respectively. In [32], it was assumed that the in-phase combination in Eq. (14) lies always the on the ground state potential. As discussed above, it can be shown that the ground state of aromatic systems is always represented by the in-phase combination of Eq. (14), and antiaromatic ones—by the out-of-phase combination. [Pg.451]

An important difference between the BO and non-BO internal Hamiltonians is that the former describes only the motion of electrons in the stationary field of nuclei positioned in fixed points in space (represented by point charges) while the latter describes the coupled motion of both nuclei and electrons. In the conventional molecular BO calculations, one typically uses atom-centered basis functions (in most calculations one-electron atomic orbitals) to expand the electronic wave function. The fermionic nature of the electrons dictates that such a function has to be antisymmetric with respect to the permutation of the labels of the electrons. In some high-precision BO calculations the wave function is expanded in terms of basis functions that explicitly depend on the interelectronic distances (so-called explicitly correlated functions). Such... [Pg.381]

The function F(l,2) is in fact the space part of the total wave function, since a non-relativistic two-electron wave function can always be represented by a product of the spin and space parts, both having opposite symmetries with respect to the electrons permutations. Thus, one may skip the spin function and use only the space part of the wave function. The only trace that spin leaves is the definite per-mutational symmetry and sign in Eq.(14) refers to singlet as "+" and to triplet as Xi and yi denote cartesian coordinates of the ith electron. A is commonly known angular projection quantum number and A is equal to 0, 1, and 2 for L, II and A symmetry of the electronic state respectively. The linear variational coefficients c, are found by solving the secular equations. The basis functions i(l,2) which possess 2 symmetry are expressed in elliptic coordinates as ... [Pg.177]

Specifically, the various papers working within both the adiabatic and the Condon approximations, and using the (frequent) assumption of harmonic vibrations, can still differ in how many and what type (optical, acoustic, or local) modes they consider and in how they approximate the four separate integrals on the right-hand side of Eq. (40). And the choice of modes applies to both the ground and the excited states (so does the choice of electronic wave functions, but this choice is implicit in the evaluation of the electronic integrals.) It is this choice regarding the two states that was emphasized in connection with Fig. 15 (Section 10b). It can be seen that even within the stated approximations (adiabatic, Condon, harmonic) there is an appreciable number of permutations and combinations. [Pg.42]

When constructing many-electron wave functions it is necessary to ensure their antisymmetry under permutation of any pair of coordinates. Having introduced the concepts of the CFP and unit tensors, Racah [22, 23] laid the foundations of the tensorial approach to the problem of constructing antisymmetric wave functions and finding matrix elements of operators corresponding to physical quantities. [Pg.110]

We mentioned earlier that the dimensionality of the FCI space is significantly reduced due to spin symmetry. This can be formulated somewhat differently due to the relation existing between the spin and permutation symmetries of the many-electronic wave functions (see [30,42]). Indeed, the wave function of two electrons in two orbitals a and b allows for six different Slater determinants... [Pg.57]

In this set the functions can be classified into two types in the right column the spatial multiplier is symmetric with respect to transpositions of the spatial coordinates and the spin multiplier is antisymmetric with respect to transpositions of the spin coordinates in the left column the spatial multiplier is antisymmetric with respect to transpositions of the spatial coordinates and the spin multipliers are symmetric with respect to transpositions of the spin coordinates. Because in the second case the spatial (antisymmetric) multiplier is the same for all three spin-functions, the energy of these three states will be the same i.e. triply degenerate - a triplet. The state with the antisymmetric spin multiplier is compatible with several different spatial wave functions, which probably produces a different value of energy when averaging the Hamiltonian, thus producing several spin-singlet states. From this example one may derive two conclusions (i) the spin of the many electronic wave function is important not by itself (the Hamiltonian is spin-independent), but as an indicator of the symmetry properties of the wave function (ii) the symmetry properties of the spatial and spin multipliers are complementary - if the spatial part is symmetric with respect to permutations the spin multiplier is antisymmetric and vice versa. [Pg.58]


See other pages where Electronic wave function, permutational is mentioned: [Pg.330]    [Pg.357]    [Pg.570]    [Pg.572]    [Pg.572]    [Pg.572]    [Pg.573]    [Pg.598]    [Pg.92]    [Pg.97]    [Pg.436]    [Pg.659]    [Pg.678]    [Pg.680]    [Pg.680]    [Pg.680]    [Pg.681]    [Pg.706]    [Pg.712]    [Pg.222]    [Pg.240]    [Pg.123]    [Pg.113]    [Pg.222]    [Pg.240]    [Pg.107]    [Pg.87]    [Pg.60]   


SEARCH



Electron functionalization

Electronic wave function

Electronic wave function, permutational symmetry

Homonuclear molecules, permutational electronic wave function

Permutability

Permutation

Permutational

Permute

Permuted

Waves electrons

© 2024 chempedia.info