Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Permutational symmetry electronic wave function

Wigner rotation/adiabatic-to-diabatic transformation matrices, 92 Electronic structure theory, electron nuclear dynamics (END) structure and properties, 326-327 theoretical background, 324-325 time-dependent variational principle (TDVP), general nuclear dynamics, 334-337 Electronic wave function, permutational symmetry, 680-682 Electron nuclear dynamics (END) degenerate states chemistry, xii-xiii direct molecular dynamics, structure and properties, 327 molecular systems, 337-351 final-state analysis, 342-349 intramolecular electron transfer,... [Pg.76]

A symmetry that holds for any system is the permutational symmetry of the polyelectronic wave function. Electrons are fermions and indistinguishable, and therefore the exchange of any two pairs must invert the phase of the wave function. This symmetry holds, of course, not only to pericyclic reactions. [Pg.344]

IT. Total Molecular Wave Functdon TIT. Group Theoretical Considerations TV. Permutational Symmetry of Total Wave Function V. Permutational Symmetry of Nuclear Spin Function VT. Permutational Symmetry of Electronic Wave Function VIT. Permutational Symmetry of Rovibronic and Vibronic Wave Functions VIIT. Permutational Symmetry of Rotational Wave Function IX. Permutational Symmetry of Vibrational Wave Function X. Case Studies Lis and Other Systems... [Pg.551]

As pointed out in the previous paragraph, the total wave function of a molecule consists of an electronic and a nuclear parts. The electrons have a different intrinsic nature from nuclei, and hence can be treated separately when one considers the issue of permutational symmetry. First, let us consider the case of electrons. These are fermions with spin and hence the subsystem of electrons obeys the Fermi-Dirac statistics the total electronic wave function... [Pg.568]

In Chapter VIII, Haas and Zilberg propose to follow the phase of the total electronic wave function as a function of the nuclear coordinates with the aim of locating conical intersections. For this purpose, they present the theoretical basis for this approach and apply it for conical intersections connecting the two lowest singlet states (Si and So). The analysis starts with the Pauli principle and is assisted by the permutational symmetry of the electronic wave function. In particular, this approach allows the selection of two coordinates along which the conical intersections are to be found. [Pg.770]

Planar molecules, permutational symmetry electronic wave function, 681-682 rotational wave function, 685-687 vibrational wave function, 687-692... [Pg.92]

The function F(l,2) is in fact the space part of the total wave function, since a non-relativistic two-electron wave function can always be represented by a product of the spin and space parts, both having opposite symmetries with respect to the electrons permutations. Thus, one may skip the spin function and use only the space part of the wave function. The only trace that spin leaves is the definite per-mutational symmetry and sign in Eq.(14) refers to singlet as "+" and to triplet as Xi and yi denote cartesian coordinates of the ith electron. A is commonly known angular projection quantum number and A is equal to 0, 1, and 2 for L, II and A symmetry of the electronic state respectively. The linear variational coefficients c, are found by solving the secular equations. The basis functions i(l,2) which possess 2 symmetry are expressed in elliptic coordinates as ... [Pg.177]

We mentioned earlier that the dimensionality of the FCI space is significantly reduced due to spin symmetry. This can be formulated somewhat differently due to the relation existing between the spin and permutation symmetries of the many-electronic wave functions (see [30,42]). Indeed, the wave function of two electrons in two orbitals a and b allows for six different Slater determinants... [Pg.57]

In this set the functions can be classified into two types in the right column the spatial multiplier is symmetric with respect to transpositions of the spatial coordinates and the spin multiplier is antisymmetric with respect to transpositions of the spin coordinates in the left column the spatial multiplier is antisymmetric with respect to transpositions of the spatial coordinates and the spin multipliers are symmetric with respect to transpositions of the spin coordinates. Because in the second case the spatial (antisymmetric) multiplier is the same for all three spin-functions, the energy of these three states will be the same i.e. triply degenerate - a triplet. The state with the antisymmetric spin multiplier is compatible with several different spatial wave functions, which probably produces a different value of energy when averaging the Hamiltonian, thus producing several spin-singlet states. From this example one may derive two conclusions (i) the spin of the many electronic wave function is important not by itself (the Hamiltonian is spin-independent), but as an indicator of the symmetry properties of the wave function (ii) the symmetry properties of the spatial and spin multipliers are complementary - if the spatial part is symmetric with respect to permutations the spin multiplier is antisymmetric and vice versa. [Pg.58]


See other pages where Permutational symmetry electronic wave function is mentioned: [Pg.330]    [Pg.357]    [Pg.570]    [Pg.572]    [Pg.572]    [Pg.573]    [Pg.598]    [Pg.92]    [Pg.97]    [Pg.436]    [Pg.659]    [Pg.678]    [Pg.680]    [Pg.680]    [Pg.681]    [Pg.706]    [Pg.107]    [Pg.125]    [Pg.436]    [Pg.659]    [Pg.678]    [Pg.680]    [Pg.680]    [Pg.681]    [Pg.706]    [Pg.534]    [Pg.536]    [Pg.543]    [Pg.394]   
See also in sourсe #XX -- [ Pg.680 , Pg.681 ]

See also in sourсe #XX -- [ Pg.680 , Pg.681 ]




SEARCH



Electron functionalization

Electron permutation symmetry

Electronic wave function

Electronic wave function, permutational

Permutability

Permutation

Permutation symmetry

Permutational

Permutational symmetry

Permute

Permuted

Symmetry function

Wave function permutational symmetry

Waves electrons

© 2024 chempedia.info