Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raman electronic spectroscopy

More recent interest has focused upon the interpretation of the relative intensities of the electronic Raman transitions. The theory of electronic Raman spectroscopy has been well-summarized elsewhere [63, 202], and the electronic Raman scattering amplitude from an initial i/rf) to a final jfj) vibronic state (where the phonon states are the same, and usually zero-phonon (i.e. electronic) states) is given by (i/ r czpCF In this expression, the cartesian polarizations of the incident photon (hcv) and the scattered photon (hcvs) are a and p, respectively. The Cartesian electronic Raman scattering tensor is written as... [Pg.215]

Electronic Raman spectroscopy has attracted increasing attention in recent years, and a theory of the resonance electronic Raman effect has now been given. Wong and Schatz have also discussed in detail the electronic Raman effect as applied to mixed-valence systems " particularly the Pt(IV)-Pt(II) linear chain compounds (following their previous study of the conventional resonance Raman spectra of these materials). [Pg.23]

As described at the end of section Al.6.1. in nonlinear spectroscopy a polarization is created in the material which depends in a nonlinear way on the strength of the electric field. As we shall now see, the microscopic description of this nonlinear polarization involves multiple interactions of the material with the electric field. The multiple interactions in principle contain infomiation on both the ground electronic state and excited electronic state dynamics, and for a molecule in the presence of solvent, infomiation on the molecule-solvent interactions. Excellent general introductions to nonlinear spectroscopy may be found in [35, 36 and 37]. Raman spectroscopy, described at the end of the previous section, is also a nonlinear spectroscopy, in the sense that it involves more than one interaction of light with the material, but it is a pathological example since the second interaction is tlirough spontaneous emission and therefore not proportional to a driving field... [Pg.252]

Vibrational spectroscopy provides detailed infonnation on both structure and dynamics of molecular species. Infrared (IR) and Raman spectroscopy are the most connnonly used methods, and will be covered in detail in this chapter. There exist other methods to obtain vibrational spectra, but those are somewhat more specialized and used less often. They are discussed in other chapters, and include inelastic neutron scattering (INS), helium atom scattering, electron energy loss spectroscopy (EELS), photoelectron spectroscopy, among others. [Pg.1149]

Infrared and Raman spectroscopy each probe vibrational motion, but respond to a different manifestation of it. Infrared spectroscopy is sensitive to a change in the dipole moment as a function of the vibrational motion, whereas Raman spectroscopy probes the change in polarizability as the molecule undergoes vibrations. Resonance Raman spectroscopy also couples to excited electronic states, and can yield fiirtlier infomiation regarding the identity of the vibration. Raman and IR spectroscopy are often complementary, both in the type of systems tliat can be studied, as well as the infomiation obtained. [Pg.1150]

Undeniably, one of the most important teclmological achievements in the last half of this century is the microelectronics industry, the computer being one of its outstanding products. Essential to current and fiiture advances is the quality of the semiconductor materials used to construct vital electronic components. For example, ultra-clean silicon wafers are needed. Raman spectroscopy contributes to this task as a monitor, in real time, of the composition of the standard SC-1 cleaning solution (a mixture of water, H2O2 and NH OH) [175] that is essential to preparing the ultra-clean wafers. [Pg.1217]

The second excitation mechanism, impact scattering, involves a short range interaction between the electron and the molecule (put simply, a collision) which scatters the electrons over a wide range of angles. The usefiil feature of impact scattering is that all vibrations may be excited and not only the dipole active ones. As in Raman spectroscopy, the electron may also take an amount of energy hv away from excited molecules and leave the surface with an energy equal to Eq + hv. [Pg.1865]

This book, originally published in 1950, is the first of a classic tliree-volume set on molecular spectroscopy. A rather complete discussion of diatomic electronic spectroscopy is presented. Volumes 11 (1945) and 111 (1967) discuss infrared and Raman spectroscopy and polyatomic electronic spectroscopy, respectively. [Pg.2089]

Figure C3.5.3. Schematic diagram of apparatus used for (a) IR pump-probe or vibrational echo spectroscopy by Payer and co-workers [50] and (b) IR-Raman spectroscopy by Dlott and co-workers [39]. Key OPA = optical parametric amplifier PEL = free-electron laser MOD = high speed optical modulator PMT = photomultiplier OMA = optical multichannel analyser. Figure C3.5.3. Schematic diagram of apparatus used for (a) IR pump-probe or vibrational echo spectroscopy by Payer and co-workers [50] and (b) IR-Raman spectroscopy by Dlott and co-workers [39]. Key OPA = optical parametric amplifier PEL = free-electron laser MOD = high speed optical modulator PMT = photomultiplier OMA = optical multichannel analyser.
The section on Spectroscopy has been expanded to include ultraviolet-visible spectroscopy, fluorescence, Raman spectroscopy, and mass spectroscopy. Retained sections have been thoroughly revised in particular, the tables on electronic emission and atomic absorption spectroscopy, nuclear magnetic resonance, and infrared spectroscopy. Detection limits are listed for the elements when using flame emission, flame atomic absorption, electrothermal atomic absorption, argon ICP, and flame atomic fluorescence. Nuclear magnetic resonance embraces tables for the nuclear properties of the elements, proton chemical shifts and coupling constants, and similar material for carbon-13, boron-11, nitrogen-15, fluorine-19, silicon-29, and phosphorus-31. [Pg.1287]

Analysis of Surface Molecular Composition. Information about the molecular composition of the surface or interface may also be of interest. A variety of methods for elucidating the nature of the molecules that exist on a surface or within an interface exist. Techniques based on vibrational spectroscopy of molecules are the most common and include the electron-based method of high resolution electron energy loss spectroscopy (hreels), and the optical methods of ftir and Raman spectroscopy. These tools are tremendously powerful methods of analysis because not only does a molecule possess vibrational modes which are signatures of that molecule, but the energies of molecular vibrations are extremely sensitive to the chemical environment in which a molecule is found. Thus, these methods direcdy provide information about the chemistry of the surface or interface through the vibrations of molecules contained on the surface or within the interface. [Pg.285]

Resonance Raman Spectroscopy. If the excitation wavelength is chosen to correspond to an absorption maximum of the species being studied, a 10 —10 enhancement of the Raman scatter of the chromophore is observed. This effect is called resonance enhancement or resonance Raman (RR) spectroscopy. There are several mechanisms to explain this phenomenon, the most common of which is Franck-Condon enhancement. In this case, a band intensity is enhanced if some component of the vibrational motion is along one of the directions in which the molecule expands in the electronic excited state. The intensity is roughly proportional to the distortion of the molecule along this axis. RR spectroscopy has been an important biochemical tool, and it may have industrial uses in some areas of pigment chemistry. Two biological appHcations include the deterrnination of helix transitions of deoxyribonucleic acid (DNA) (18), and the elucidation of several peptide stmctures (19). A review of topics in this area has been pubHshed (20). [Pg.210]


See other pages where Raman electronic spectroscopy is mentioned: [Pg.43]    [Pg.197]    [Pg.81]    [Pg.572]    [Pg.694]    [Pg.288]    [Pg.297]    [Pg.930]    [Pg.702]    [Pg.875]    [Pg.43]    [Pg.197]    [Pg.81]    [Pg.572]    [Pg.694]    [Pg.288]    [Pg.297]    [Pg.930]    [Pg.702]    [Pg.875]    [Pg.257]    [Pg.203]    [Pg.584]    [Pg.244]    [Pg.1151]    [Pg.1179]    [Pg.1179]    [Pg.1190]    [Pg.1190]    [Pg.1191]    [Pg.1192]    [Pg.1200]    [Pg.1200]    [Pg.1201]    [Pg.1214]    [Pg.2451]    [Pg.2749]    [Pg.2962]    [Pg.242]    [Pg.269]    [Pg.276]    [Pg.1]    [Pg.208]    [Pg.208]    [Pg.140]    [Pg.444]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



© 2024 chempedia.info