Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic processes and redox reactions

Electronic Processes and Redox Reactions in Bilayer Lipid Membranes... [Pg.505]

Basics of Cyclic Voltammetry. Electrochemical techniques such as cyclic voltammetry (CV) and linear sweep voltammetry (LSV) are most appropriate to the study of electronic processes and redox reactions. These techniques are conceptually elegant and experimentally simple thus they are popular for studying redox reactions at the electrode-solution interfaces and have been increasingly employed by electrochemists (2, 7). Several remarks regarding the cyclic voltammograms of electron-conducting BLM should be made. [Pg.508]

Proton transfer is a particularly important transport process. Beyond acid-base reactions, proton transfer may be coupled to electron transfer in redox reactions and to excited-state chemistry. It is of enormous significance in biochemical processes where it is an essential step in hydrolytic enzyme processes and redox reactions spanning respiration, and photosynthesis where proton motion is responsible for sustaining redox gradients. In relatively recent times, proton transfer in the excited state has undergone significant study, primarily fueled by advances in ultrafast spectroscopy. [Pg.46]

Summary Electrochemistry is the study of chemical reactions that produce electricity, and chemical reactions that take place because electricity is supplied. Electrochemical reactions may be of many types. Electroplating is an electrochemical process. So are the electrolysis of water, the production of aluminum metal, and the production and storage of electricity in batteries. All these processes involve the transfer of electrons and redox reactions. [Pg.241]

In D2O, HD was found instead of 0-H2. It is presently assumed that binding of hydrogen to a metal ion in the bimetallic active site weakens the H-H bond sufficiently to enable this reaction. Oxidation of the hydride is expected to be a two-electron process, and hydrogenases should, therefore, contain a redox unit capable of accepting these two electrons simultaneously. I assume here that the bimetallic center plus the conserved proximal Fe-S cluster perform this task. [Pg.23]

Inasmuch as flavins can accommodate two electrons but possess a relatively stable one-electron intermediate, an obvious question which can be asked of any flavin-mediated two electron redox reaction is whether or not the mechanism includes the radical species on a direct line between reactants and products. The mere observation of semiquinones in a reaction mixture is not sufficient evidence for their intermediacy, due to the existence of side reactions such as comproportionation (F -I- FH2 2 FH-) which can generate radicals rapidly. Bruice has discussed this question from a physical-organic point of view and concluded that there must exist a competition between one-electron and two-electron processes and that the actual mechanism should be determined mainly by the free energy of formation of substrate radical and the nucleophilicity of the substrate. Bruice has analyzed a variety of systems which he feels should proceed via one-electron mechanisms among these are quinone and carbonyl group reduction by FH2... [Pg.122]

Organic Systems. The photooxidation and reduction reactions for most organic compounds require two electron processes and are generally irreversible. However, several phenothiazine dyes, such as Thionine and Methylene Blue, function as reversible two electron redox systems. The reversible photobleaching of chlorophyll may also involve a one or two electron process although the exact mechanism is still in doubt. One electron redox processes for organic molecules are possible... [Pg.294]

As discussed above, a chemical transformation which occurs during the ac electrolysis does not require the intermediate formation of excited states. The chemical reaction may take place in the reduced and/ or oxidized form of a compound. Nevertheless, in this case the electrolysis may still lead to the same products as those of the photolysis due to the obvious relationship between electronic excitation and redox processes. It will be then quite difficult to elucidate the mechanism of electrolysis. This reaction type may apply to the electrochemical substitution of Cr(CO) (59). [Pg.128]

Together with acid-base reactions, where a proton transfer occurs (pH-dependent dissolution/ precipitation, sorption, complexation) redox reactions play an important role for all interaction processes in aqueous systems. Redox reactions consist of two partial reactions, oxidation and reduction, and can be characterized by oxygen or electron transfer. Many redox reactions in natural aqueous systems can actually not be described by thermodynamic equilibrium equations, since they have slow kinetics. If a redox reaction is considered as a transfer of electrons, the following general reaction can be derived ... [Pg.36]

An essential feature of reactions catalyzed by metal-sulfur oxidoreductases is the coupling of proton- and electron-transfer processes. In this context, an important question is how primary protonation of metal-sulfur sites influences the metal-sulfur cores, small molecules bound to them, and the subsequent transfer of electrons. In order to shed light upon this question, protonations, isoelectronic alkylations, and redox reactions of [M(L) (S )] complexes were investigated (M = Fe, Ru, Mo L = CO, NO S = Sj, US24 ). The CO and NO ligands served as infrared (IR) probe for the electron density at the metal centers. Resulting complexes were characterized as far as possible by X-ray crystallography. Scheme 23 shows examples of such complexes. [Pg.623]

As with most concepts involving electrons, oxidation and reduction reactions are often initially misinterpreted as complicated and difficult to understand. Oxidation and reduction are simply complementary processes involving the loss and gain of electrons from molecules, atoms or ions. Whereas oxidation is the loss of one or more electrons (i.e. oxidation is loss (OIL)), reduction is gain of one or more electrons (i.e. reduction is gain (RIG)). These abbreviations are an easy way to remember the difference between these two processes with respect to electron changes (OIL RIG). As these processes are complementary and occur in the same system they are often referred to as redox reactions (i.e. reduction and oxidation). Figure 4.1 provides a simple illustration of this principle. [Pg.79]

Once [L(CO)xM(L )+] is formed, reactions Cl and C2 cycle (ligand exchange and redox reactions, respectively) and yield the [L(CO)xM(PR3)] complex. The process functions approximately, with one electron for every 1,000 molecules. [Pg.767]


See other pages where Electronic processes and redox reactions is mentioned: [Pg.507]    [Pg.509]    [Pg.511]    [Pg.513]    [Pg.515]    [Pg.517]    [Pg.519]    [Pg.521]    [Pg.507]    [Pg.509]    [Pg.511]    [Pg.513]    [Pg.515]    [Pg.517]    [Pg.519]    [Pg.521]    [Pg.228]    [Pg.373]    [Pg.5835]    [Pg.548]    [Pg.540]    [Pg.541]    [Pg.258]    [Pg.188]    [Pg.171]    [Pg.93]    [Pg.795]    [Pg.290]    [Pg.345]    [Pg.62]    [Pg.22]    [Pg.150]    [Pg.60]    [Pg.330]    [Pg.159]    [Pg.196]    [Pg.1208]    [Pg.1245]    [Pg.124]    [Pg.4007]    [Pg.294]    [Pg.2679]    [Pg.356]    [Pg.2]    [Pg.340]   
See also in sourсe #XX -- [ Pg.513 , Pg.514 , Pg.515 , Pg.516 , Pg.517 , Pg.518 , Pg.519 , Pg.520 , Pg.521 , Pg.522 , Pg.523 , Pg.524 , Pg.525 , Pg.526 , Pg.527 , Pg.528 ]




SEARCH



Electron processes

Electronic processes

Electronic processes and redox

Redox electron

Redox processes

© 2024 chempedia.info