Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-withdrawing groups intermediates

The azide anion, often in hydiazoic acid, adds in good yield and, when strong electron-withdrawing groups are present, shows the normal 2,3-orientation (58) (49). The intermediates, useful for further synthetic goals, can, for example, be converted to heterocychc products, eg (59). The yields for various R groups are as follows ... [Pg.410]

The intermediates of type (8), wherein G is an electron withdrawing group, which are used in the dyestuffs industry, are usually produced by the user companies themselves and used direcdy. The type (9) amino ester is another product from the SCL range of thiophene derivatives, produced in metric ton quantities for specific outlets. [Pg.22]

This method is suitable only for the preparation of 4-substituted and/or 3,4-disubstituted derivatives, the substituents being only alkyl, aryl or heteroaryl groups. The presence of electron-withdrawing groups in the unsaturated side chain prevents the cyclization step. This is understandable if the influence of such groups on the stability of the intermediate carbonium ion is considered. Of more limited application is the analogous cyclization of diazotized o-aminophenylpropiolic acids, the reaction being referred to as the Richter synthesis (Scheme 70). A related synthesis (also referred to as the Neber-Bossel synthesis)... [Pg.43]

Radical chlorination reactions show a substantial polar effect. Positions substituted by electron-withdrawing groups are relatively unreactive toward chlorination, even though the substituents may be potentially capable of stabilizing the free-radical intermediate " ... [Pg.703]

Similarly, carboxylic acid and ester groups tend to direct chlorination to the / and v positions, because attack at the a position is electronically disfavored. The polar effect is attributed to the fact that the chlorine atom is an electrophilic species, and the relatively electron-poor carbon atom adjacent to an electron-withdrawing group is avoided. The effect of an electron-withdrawing substituent is to decrease the electron density at the potential radical site. Because the chlorine atom is highly reactive, the reaction would be expected to have a very early transition state, and this electrostatic effect predominates over the stabilizing substituent effect on the intermediate. The substituent effect dominates the kinetic selectivity of the reaction, and the relative stability of the radical intermediate has relatively little influence. [Pg.704]

The reactions of electrophilic alkenes (alkenes attached to electron-withdrawing groups) with enamines produce one or more of the following products simple alkylation (2), 1,2 cycloaddition (3), and 1,4 cycloaddition (4). Competition with C alkylation by N alkylation is inconsequential and therefore will be largely ignored (5,7). A stepwise ionic mechanism leading to these products necessarily involves the formation of a zwitterion intermediate (1) as the first step, which is then followed either by one of the... [Pg.213]

Olefins conjugated with electron-withdrawing groups other than a carbonyl group undergo reactions with enamines in a manner similar to the carbonyl-conjugated electrophilic alkenes described above. Namely, they condense with an enamine to form a zwitterion intermediate from which either 1,2 cycloaddition to form a cyclobutane ring or simple alkylation can take place. [Pg.222]

Electron-donor substituents are known to accelerate the rate of electrophilic substitution on benzene, while electron-withdrawing groups are known to retard the reaction. One explanation is that electron donors stabilize the positive charge in the benzenium ion intermediate while electron-withdrawing substituents destabilize the positive charge. [Pg.190]

The first condensation is conducted selectively on a variety of 3-ketoesters and a-formylesters. The first step works well on most simple anilines even when sterically congested and is mostly affected by basicity. Formation of intermediate 3 is problematic when strong electron-withdrawing groups (EWG) are attached to the aniline (e.g., nitro). The cyclization step is promoted thermally in inert solvents as well as using acidic solvents at elevated temperature. When there exists an opportunity to form isomers on cyclization (e.g., m-substituted anilines) a mixture of the 5- and 7-substituted quinolines usually results. [Pg.398]

An interesting intermediate 30 was proposed to result from the sequential addition of pyridine to tetrachlorocyclopropene (31). Compound 30 represents an alkyl nitrogen ylide with two 1-chloroalkyl pyridinium moieties in the same molecule. Pyridines with electron-withdrawing groups and heterocycles with an electron-deficient nitrogen, for example, pyridine-3-carbaldehyde or quinoline, react with 31 to yield the corresponding mono-substituted products 32a and 32b (83JOC2629) (Scheme 8). [Pg.188]

The reaction starts with the nucleophilic addition of a tertiary amine 4 to the alkene 2 bearing an electron-withdrawing group. The zwitterionic intermediate 5 thus formed, has an activated carbon center a to the carbonyl group, as represented by the resonance structure 5a. The activated a-carbon acts as a nucleophilic center in a reaction with the electrophilic carbonyl carbon of the aldehyde or ketone 1 ... [Pg.28]

The self-condensation is largely suppressed in reactions with those ketones 2, that are activated by an electron-withdrawing substituent or R". The carbonyl activity is then increased, and the enamine-intermediate 5 is favored over the imine 4, by conjugation with the electron-withdrawing group. ... [Pg.181]

Mechanistically the rearrangement is formulated to proceed via an intermediate radical-pair or ion-pair. In either case the initial step is the formation of a nitrogen-ylide 2 by deprotonation of the ammonium species with a strong base. The abstraction of a proton from the a-carbon is facilitated by an electron-withdrawing group Z—e.g. an ester, keto or phenyl group ... [Pg.262]

Anionic polymerization is better for vinyl monomers with electron withdrawing groups that stabilize the intermediates. Typical monomers best polymerized by anionic initiators include acrylonitrile, styrene, and butadiene. As with cationic polymerization, a counter ion is present with the propagating chain. The propagation and the termination steps are similar to cationic polymerization. [Pg.308]

The substrate scope is limited, as electron-withdrawing groups (X = p-N02 or p-CF3) on the aromatic substituent are not tolerated. However, this route does provide valuable intermediates to unnatural a-amino phosphonic acid analogues and the sulfimine can readily be oxidized to the corresponding sulfonamide, thereby providing an activated aziridine for further manipulation, or it can easily be removed by treatment with a Grignard reagent. [Pg.26]

This mechanism does not apply to unsubstituted or N,N-disubstituted aryl carbamates, which hydrolyze by the normal mechanisms. Carboxylic esters substituted in the a position by an electron-withdrawing group (e.g., CN or COOEt) can also hydrolyze by a similar mechanism involving a ketene intermediate. These elimination-addition mechanisms usually are referred to as ElcB mechanisms, because that is the name given to the elimination portion of the mechanism (p. 1308). [Pg.474]

The first step is an example of 12-52 and intermediate N-halo amides (69) have been isolated. In the second step, 69 lose a proton to the base. Compound 69 are acidic because of the presence of two electron-withdrawing groups (acyl and halo) on the nitrogen. It is possible that the third step is actually two steps loss of bromide to... [Pg.1411]

When electron-withdrawing groups are attached to the double bond, the reaction is strongly inhibited and may fail completely. In such cases, the bromide anion, produced by the reaction of dimethyl sulfoxide with N-bromosuccinimide, competes with the dimethyl sulfoxide for the bromonium (or bromo carbonium) ion, an intermediate of the reaction. Thus, dibromide may accompany recovered alkene or any bromohydrin formed. Similarly, exogenous anions often compete with dimethyl sulfoxide for the cation. ... [Pg.10]

The alcoholysis and transamination of various aminophosphines have been studied as functions of the basicity of the attacking nucleophile and the substituents on phosphorus. As might be expected the reaction is facilitated by electron-withdrawing groups on phosphorus. The hydrolysis of tris(dimethylamino)phosphine (90) to phosphorous acid has been investigated using thin-layer chromatography and the amides (91) and (92) have been identified as intermediates. [Pg.85]


See other pages where Electron-withdrawing groups intermediates is mentioned: [Pg.389]    [Pg.405]    [Pg.484]    [Pg.642]    [Pg.389]    [Pg.405]    [Pg.484]    [Pg.642]    [Pg.297]    [Pg.493]    [Pg.82]    [Pg.286]    [Pg.297]    [Pg.86]    [Pg.78]    [Pg.213]    [Pg.476]    [Pg.491]    [Pg.60]    [Pg.703]    [Pg.38]    [Pg.381]    [Pg.445]    [Pg.308]    [Pg.35]    [Pg.574]    [Pg.57]    [Pg.8]    [Pg.77]    [Pg.365]    [Pg.768]    [Pg.850]    [Pg.897]    [Pg.982]    [Pg.1081]    [Pg.101]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



Electron withdrawal

Electron withdrawers

Electron withdrawing groups

Electron-withdrawing groups nucleophilic additions, carbanion intermediates

© 2024 chempedia.info