Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoselective Electron Transfer

Ichinose, N., Mizuno, K., Tamai, T., and Otsuji, Y., Photooxygenation of l-aIkyl-2,3-diarylcyclo-propanes via photoinduced electron transfer stereoselective formation of 4-aIkyl-3,5-diaryl-l,2-dioxolanes and their conversion to 1,2-diols,/. Org. Chem., 55, 4079,1990. [Pg.110]

Provided electron transfer between the electrode and solute species is not interrupted by the coating, even electroinactive films can offer interesting applications. Thus, a chiral environment in the surface layer may impose stereoselectivity in the follow-up reactions of organic or organometallic intermediates. Furthermore, polymer layers may be used to obtain diffusional permeation selectivity for certain substrates, or as a preconcentration medium for analyzing low concentration species. [Pg.51]

Since the seminal contributions by Nugent and RajanBabu the field of reductive C - C bond formation after epoxide opening via electron transfer has developed at a rapid pace. Novel catalytic methodology, enantio- and stereoselective synthesis and numerous applications in the preparation of biologically active substances and natural products have evolved. In brief, a large repertoire of useful and original reactions is available. These reactions are waiting to be applied in a complex context ... [Pg.58]

The multi-component systems developed quite recently have allowed the efficient metal-catalyzed stereoselective reactions with synthetic potential [75-77]. Multi-components including a catalyst, a co-reductant, and additives cooperate with each other to construct the catalytic systems for efficient reduction. It is essential that the active catalyst is effectively regenerated by redox interaction with the co-reductant. The selection of the co-reductant is important. The oxidized form of the co-reductant should not interfere with, but assist the reduction reaction or at least, be tolerant under the conditions. Additives, which are considered to contribute to the redox cycle directly, possibly facilitate the electron transfer and liberate the catalyst from the reaction adduct. Co-reductants like Al, Zn, and Mg are used in the catalytic reactions, but from the viewpoint of green chemistry, an electron source should be environmentally harmonious, such as H2. [Pg.83]

The absence of stereoselectivity observed here has been explained by a one-electron transfer mechanism 66) (see 5.4)... [Pg.104]

Epimerization at tin has occured during the substitution process. A one-electron transfer mechanism has been proposed here as for the reactions described in Sections 5.3, 5.4, and 5.8 to account for the absence of stereoselectivity. [Pg.105]

Scheme 5.1. Stereoselective domino cyclization via photoinduced electron-transfer reaction. Scheme 5.1. Stereoselective domino cyclization via photoinduced electron-transfer reaction.
Other radical cyclization approaches to the synthesis of piperidines include a CAN-mediated stereoselective cyclization of epoxypropyl cinnamyl amines <06TL705> and a cyclization of (-trimethylsilylmethylamine radical cation, generated via a photoinduced electron transfer reaction to a tethered -functionality <06JOC8481>. [Pg.335]

The stereoselective 1,4-addition of lithium diorganocuprates (R2CuLi) to unsaturated carbonyl acceptors is a valuable synthetic tool for creating a new C—C bond.181 As early as in 1972, House and Umen noted that the reactivity of diorganocuprates directly correlates with the reduction potentials of a series of a,/ -unsaturated carbonyl compounds.182 Moreover, the ESR detection of 9-fluorenone anion radical in the reaction with Me2CuLi, coupled with the observation of pinacols as byproducts in equation (40) provides the experimental evidence for an electron-transfer mechanism of the reaction between carbonyl acceptors and organocuprates.183... [Pg.246]

Tetrahydropyrrolo[l,4]oxazine 74, obtained by photoinduced electron-transfer (PET) oxidative activation of substituted prolinol, undergoes nucleophilic substitution of the OH at position C-3 with allyltrimethylsilane in the presence of TiCU (Scheme 8). The reaction was highly stereoselective and produced, after hydrolysis of the resultant amide 75, optically active a-hydroxy acid 76 together with the auxiliary (.S )-prolinol that can be effectively recycled <1998TL7153>. [Pg.507]

The oxazinones 74 and 79, already described as chiral glycine templates in Section 11.11.6.3, have been prepared by the PET cyclisation of 252 by irradiation in the presence of 1,4-dicyanonaphthalene as the electron acceptor and methyl viologen as electron-transfer mediator. When the reaction was carried out under strictly anhydrous conditions, compound 79 was isolated, whereas when the reaction was carried out in wet MeCN, compound 74 was the exclusive product (Scheme 33). In any case, the products were obtained with high stereoselectivity, which is the condition required to use them as chiral auxiliaries <2000EJ0657>. [Pg.524]

Electron transfer sensitization allows either the radical cation or the radical anion of an aromatic alkene to form as desired, which finally results in nucleophile addition with Markovnikov and anti-Markovnikov regiochemistry. In an apolar solvent, the tight radical ion pair undergoes a stereoselective reaction when the electron-accepting sensitizer is chiral (Figure 3.10). ... [Pg.72]

One might anticipate that there would be a rate difference for the reaction of enantiomers with a chiral compound. The first demonstration of stereoselectivity in an outer-sphere electron transfer was as recent as 1980. Since then such asymmetric induction has been established with a number of examples, nearly all involving outer-sphere redox reactions. Thus, consider the two reactions... [Pg.277]

The electroreductive cyclization reaction of 6-heptene-2-one 166, producing CIS-1,2-dimethylcyclopentanol 169, was discovered more than twenty years ago [166]. In agreement with Baldwin s rules, the 5-exo product is obtained in a good yield. Since that time, the mechanism of this remarkable regio- and stereoselective reaction has been elucidated by Kariv-Miller et al. [167-169]. Reversible cyclization of the initially formed ketyl radical anion 167 provides either the cis or the trans distonic radical anion. Subsequent electron transfer and protonation from the kinetically preferred 168 leads to the major cis product 169. The thermodynamically preferred 170 is considered as a source of the trace amounts of the trans by-product 171 (Scheme 32). [Pg.101]

Photo-oxidation of l,l-dialkyl-2-arylhydrazines by single-electron transfer with trimethylsilyl cyanide (TMSCN) as cyanide ion source leads to regio- and stereoselective a-hydrazino nitriles. This stereoselective cyanation of hydrazines takes place on the more substituted carbon atom compared with the results obtained with tertiary amines (Scheme 5). [Pg.170]

The stereoselectivity of anti-Markovnikov adducts (161) and (162) produced through photo-induced electron-transfer reaction of (160) with MeOH in MeCN depends on the optimum structures and stabilities of the corresponding radical and carbanion intermediates (163) and (164). In PhH, steric hindrance in an exciplex, comprising an excited singlet sensitizer and (160), forced cis addition of MeOH to (160) to give trans-isomer (161) as the major addition product. [Pg.208]

Highly efficient and stereoselective addition of tertiary amines to electron-deficient alkenes is used by Pete et al. for the synthesis of necine bases [26,27], The photoinduced electron transfer of tertiary amines like Af-methylpyrrolidine to aromatic ketone sensitizers yield regiospecifically only one of the possible radical species which then adds diastereospecifically to (5I )-5-menthyloxy-2-(5//)-furanone as an electron-poor alkene. For the synthesis of pyrrazolidine alkaloids in approximately 30% overall yield, the group uses a second PET step for the oxidative demethylation of the pyrrolidine. The resulting secondary amine react spontaneously to the lactam by intramolecular aminolysis of the lactone (Scheme 20) [26,27]. [Pg.197]

Mattay et al. examined the regioselective and stereoselective cyclization of unsaturated silyl enol ethers by photoinduced electron transfer using DCA and DCN as sensitizers. Thereby the regiochemistry (6-endo versus 5-exo) of the cyclization could be controlled because in the absence of a nucleophile, like an alcohol, the cyclization of the siloxy radical cation is dominant, whereas the presence of a nucleophile favors the reaction pathway via the corresponding a-keto radical. The resulting stereoselective cis ring juncture is due to a favored reactive chair like conformer with the substituents pseudoaxial arranged (Scheme 27) [36,37]. [Pg.201]

Pandey and co-workers developed two photosystems useful for initiating one-electron reductive chemistry and applied them to activate a, 3-unsaturated ketones. The resulting carbon-centered radicals cyclize stereoselectively with proximate olefins. Their concept involved a secondary and dark electron transfer from... [Pg.206]

Cyclopropane ring formation under electron transfer conditions shows no stereoselectivity. Reduction in dimethylformamide of pure meso- or ( )-2,4-dibromopentene gives the same mixture of cis- and rra s-l,2-dimethylcyclo-pentane [92], Cis- and /ranj-l,3-dibromocyclohexane are both satisfactory substrates for formation of bicyclo[3.1.0]hexane and either isomer of 1,3-dibromocyclopentane affords bicyclo[2.1.0]pentane [93]. Endo-2,endo-6-dibromobomane 16 gives a mixttire of tricyclene and bomane on electrochemical... [Pg.111]


See other pages where Stereoselective Electron Transfer is mentioned: [Pg.277]    [Pg.34]    [Pg.28]    [Pg.277]    [Pg.34]    [Pg.28]    [Pg.329]    [Pg.187]    [Pg.257]    [Pg.27]    [Pg.3]    [Pg.101]    [Pg.83]    [Pg.371]    [Pg.49]    [Pg.205]    [Pg.315]    [Pg.256]    [Pg.401]    [Pg.421]    [Pg.69]    [Pg.120]    [Pg.329]    [Pg.118]    [Pg.473]    [Pg.370]    [Pg.378]    [Pg.329]    [Pg.289]    [Pg.290]   
See also in sourсe #XX -- [ Pg.34 ]

See also in sourсe #XX -- [ Pg.26 , Pg.29 ]




SEARCH



Electron transfer stereoselectivity

Energy transfer stereoselective photoinduced electron

Stereoselective photoinduced electron transfer reaction

Stereoselectivity in Electron Transfer

Steric effects stereoselective electron transfer

© 2024 chempedia.info