Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer solvent

For the [Pdltriphosphinejlsolvent)] " " complexes, the metallocarboxylic acid formed in step 3 of Sch. 2 is not ready to undergo C—O bond cleavage. In order for this reaction to occur, an additional electron transfer, solvent loss, and a second protonation have to occur. Of particular interest in this sequence is the loss of a weakly coordinated solvent molecule (step 5), to produce a vacant site on the metal for water to occupy as the C—O bond of CO2 is broken to form coordinated CO and coordinated water [34, 35]. This C—O bond cleavage reaction is the slow step in the catalytic cycle for these catalysts at low acid concentrations, and a vacant coordination site is required for this reaction to occur. C—O bond cleavage is also the slow step for Fe(porphyrin) catalysts at low acid concentrations (H+, Mg +, or CO2) [37-39]. In this case, a vacant coordination site is not required. However, the potentials at which catalysis occurs in this case (approximately —2.0 V vs. ferrocene/ferrocen-ium) is much more negative than those... [Pg.213]

Similarly, changes must take place in the outer solvation shell diirmg electron transfer, all of which implies that the solvation shells themselves inliibit electron transfer. This inliibition by the surrounding solvent molecules in the iimer and outer solvation shells can be characterized by an activation free energy AG. ... [Pg.604]

Zhong Y and McHale J L 1997 Resonance Raman study of solvent dynamics in electron transfer. II. Betaine-30 in... [Pg.1175]

Wang 0, Akhremitchev B and Walker G 0 1997 Femtosecond infrared and visible spectroscopy of photoinduced intermolecular electron transfer dynamics and solvent-solute reaction geometries Coumarin 337 in dimethylaniline J. Rhys. Chem. A 101 2735-8... [Pg.1999]

Imahori H, Hagiwara K, Aoki M, Akiyama T, Taniguchi S, Okada T, Shirakawa M and Sakata Y 1996 Linkage and solvent dependence of photoinduced electron transfer in porphyrin-Cgg dyads J. Am. Chem. Soc. 118 11 771-82... [Pg.2436]

Modem electron transfer tlieory has its conceptual origins in activated complex tlieory, and in tlieories of nonradiative decay. The analysis by Marcus in tire 1950s provided quantitative connections between the solvent characteristics and tire key parameters controlling tire rate of ET. The Marcus tlieory predicts an adiabatic bimolecular ET rate as... [Pg.2975]

Electron transfer reaction rates can depend strongly on tire polarity or dielectric properties of tire solvent. This is because (a) a polar solvent serves to stabilize botli tire initial and final states, tluis altering tire driving force of tire ET reaction, and (b) in a reaction coordinate system where the distance between reactants and products (DA and... [Pg.2984]

In Debye solvents, x is tire longitudinal relaxation time. The prediction tliat solvent polarization dynamics would limit intramolecular electron transfer rates was stated tlieoretically [40] and observed experimentally [41]. [Pg.2985]

Figure C3.2.12. Experimentally observed electron transfer time in psec (squares) and theoretical electron transfer times (survival times, Tau a and Tau b) predicted by an extended Sumi-Marcus model. For fast solvents tire survival times are a strong Emction of tire characteristic solvent relaxation dynamics. For slower solvents tire electron transfer occurs tlirough tire motion of intramolecular degrees of freedom. From [451. Figure C3.2.12. Experimentally observed electron transfer time in psec (squares) and theoretical electron transfer times (survival times, Tau a and Tau b) predicted by an extended Sumi-Marcus model. For fast solvents tire survival times are a strong Emction of tire characteristic solvent relaxation dynamics. For slower solvents tire electron transfer occurs tlirough tire motion of intramolecular degrees of freedom. From [451.
Figure C3.2.13. Orientation in a photoinitiated electron transfer from dimetliylaniline (DMA) solvent to a coumarin solute (C337). Change in anisotropy, r, reveals change in angle between tire pumped and probed electronic transition moments. From [46],... Figure C3.2.13. Orientation in a photoinitiated electron transfer from dimetliylaniline (DMA) solvent to a coumarin solute (C337). Change in anisotropy, r, reveals change in angle between tire pumped and probed electronic transition moments. From [46],...
Calculations within tire framework of a reaction coordinate degrees of freedom coupled to a batli of oscillators (solvent) suggest tliat coherent oscillations in the electronic-state populations of an electron-transfer reaction in a polar solvent can be induced by subjecting tire system to a sequence of monocliromatic laser pulses on tire picosecond time scale. The ability to tailor electron transfer by such light fields is an ongoing area of interest [511 (figure C3.2.14). [Pg.2987]

Kosower E M and Huppert D 1983 Solvent motion controls the rate of intramolecular electron transfer Chem. Phys. Lett. 96 433-5... [Pg.2995]

The equation does not take into account such pertubation factors as steric effects, solvent effects, and ion-pair formation. These factors, however, may be neglected when experiments are carried out in the same solvent at the same temperature and concentration for an homogeneous set of substrates. So, for a given ambident nucleophile the rate ratio kj/kj will depend on A and B, which vary with (a) the attacked electrophilic center, (b) the solvent, and (c) the counterpart cationic species of the anion. The important point in this kind of study is to change only one parameter at a time. This simple rule has not always been followed, and little systematic work has been done in this field (12) stiH widely open after the discovery of the role played by single electron transfer mechanism in ambident reactivity (1689). [Pg.6]

Group I metals—sodium is the one usually employed—in liquid ammonia as the solvent convert alkynes to trans alkenes The reaction proceeds by a four step sequence in which electron transfer and proton transfer steps alternate... [Pg.384]

Most metal carbonyls are synthesized in nonaqueous media. Reactive metals, such as sodium (85), magnesium (105), zinc (106), and aluminum (107,108), are usually used as reducing agents. Solvents that stabilize low oxidation states of metals and act as electron-transfer agents are commonly employed. These include diethyl ether, tetrahydrofiiran, and 2-methoxyethyl ether (diglyme). [Pg.68]

Oxidation—Reduction. Redox or oxidation—reduction reactions are often governed by the hard—soft base rule. For example, a metal in a low oxidation state (relatively soft) can be oxidized more easily if surrounded by hard ligands or a hard solvent. Metals tend toward hard-acid behavior on oxidation. Redox rates are often limited by substitution rates of the reactant so that direct electron transfer can occur (16). If substitution is very slow, an outer sphere or tunneling reaction may occur. One-electron transfers are normally favored over multielectron processes, especially when three or more species must aggregate prior to reaction. However, oxidative addition... [Pg.170]

R. van Eldik, ed.. Inorganic High Pressure Chemistry, Elsevier, Amsterdam, The Netherlands, 1986. High pressure coordination kinetics including solvent exchange, octahedral and four-coordinate substitution, electron transfer, photochemical, and bioinorganics are discussed. [Pg.174]

Dicarbocyanine and trie arbo cyanine laser dyes such as stmcture (1) (n = 2 and n = 3, X = oxygen) and stmcture (34) (n = 3) are photoexcited in ethanol solution to produce relatively long-Hved photoisomers (lO " -10 s), and the absorption spectra are shifted to longer wavelength by several tens of nanometers (41,42). In polar media like ethanol, the excited state relaxation times for trie arbo cyanine (34) (n = 3) are independent of the anion, but in less polar solvent (dichloroethane) significant dependence on the anion occurs (43). The carbocyanine from stmcture (34) (n = 1) exists as a tight ion pair with borate anions, represented RB(CgH5 )g, in benzene solution photoexcitation of this dye—anion pair yields a new, transient species, presumably due to intra-ion pair electron transfer from the borate to yield the neutral dye radical (ie, the reduced state of the dye) (44). [Pg.398]

The environmental (i.e., solvent and/or protein) free energy curves for electron transfer reactions can be generated from histograms of the polarization energies, as in the works of Warshel and coworkers [79,80]. [Pg.408]

This section contains a brief review of the molecular version of Marcus theory, as developed by Warshel [81]. The free energy surface for an electron transfer reaction is shown schematically in Eigure 1, where R represents the reactants and A, P represents the products D and A , and the reaction coordinate X is the degree of polarization of the solvent. The subscript o for R and P denotes the equilibrium values of R and P, while P is the Eranck-Condon state on the P-surface. The activation free energy, AG, can be calculated from Marcus theory by Eq. (4). This relation is based on the assumption that the free energy is a parabolic function of the polarization coordinate. Eor self-exchange transfer reactions, we need only X to calculate AG, because AG° = 0. Moreover, we can write... [Pg.408]

J-K Elwang, A Warshel. Microscopic examination of free-energy relationships for electron transfer m polar solvents. J Am Chem Soc 109 715-720, 1987. [Pg.415]

A Warshel. Dynamics of reactions m polar solvents. Semiclassical trajectory studies of electron-transfer and proton-transfer reactions. J Phys Chem 86 2218-2224, 1982. [Pg.415]


See other pages where Electron transfer solvent is mentioned: [Pg.334]    [Pg.478]    [Pg.204]    [Pg.71]    [Pg.151]    [Pg.257]    [Pg.20]    [Pg.219]    [Pg.27]    [Pg.183]    [Pg.420]    [Pg.443]    [Pg.334]    [Pg.478]    [Pg.204]    [Pg.71]    [Pg.151]    [Pg.257]    [Pg.20]    [Pg.219]    [Pg.27]    [Pg.183]    [Pg.420]    [Pg.443]    [Pg.604]    [Pg.2971]    [Pg.2986]    [Pg.16]    [Pg.440]    [Pg.263]    [Pg.119]    [Pg.50]    [Pg.621]    [Pg.188]    [Pg.397]    [Pg.398]    [Pg.399]    [Pg.410]   
See also in sourсe #XX -- [ Pg.113 , Pg.114 , Pg.115 , Pg.116 , Pg.117 , Pg.118 ]




SEARCH



Adiabaticity, electron-transfer reactions nonadiabatic solvent effects

Electron Transfer Mediated by Solvent Molecules

Electron solvents

Electron transfer solvent dependence

Electron transfer solvent effect

Electron transfer solvent reorganization

Electron-transfer . nonadiabatic solvent

Electron-transfer . nonadiabatic solvent change

Electron-transfer . nonadiabatic solvent diffusion effects

Electron-transfer . nonadiabatic solvent electronic coupling

Electron-transfer . nonadiabatic solvent rate constant

Electron-transfer . nonadiabatic solvent structure

Electron-transfer . nonadiabatic solvent transitions

Electron-transfer reactions, solvent effects

Electron-transfer reactions, solvent effects radical

Electronic coupling, electron-transfer reactions, nonadiabatic solvent effects

Nonadiabatic solvent effects, electron-transfer electronic coupling

Nonadiabatic solvent effects, electron-transfer transitions

Photoemission electron transfer from solvent

Relaxation time, solvent dynamic effect electron transfer

Solvent Effects in Electron Transfer Reactions

Solvent Effects on Electron-Transfer Equilibria

Solvent cage electron-transfer oxidation

Solvent electron transfer kinetics

Solvent reorganization energy, electron transfer reactions

Solvent transfer

Solvent trapping electron transfer

Solvent-controlled electron transfer dynamic

The Electron Transfer Activation Energy and Solvent Reorganisation Term

© 2024 chempedia.info