Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer solvation states

Mitchell, C.D. and Netzel T.L., CIS INDO/S SCRF study of electron transfer excige states in a 1-pyrenyl substituted l-methyluracil-5-carboxamide nucleoside dielctric continuum solvation effects on electron transger states. J.Phys.Chem. B (2000) 104 125—136. [Pg.101]

In this section, we switch gears slightly to address another contemporary topic, solvation dynamics coupled into the ESPT reaction. One relevant, important issue of current interest is the ESPT coupled excited-state charge transfer (ESCT) reaction. Seminal theoretical approaches applied by Hynes and coworkers revealed the key features, with descriptions of dynamics and electronic structures of non-adiabatic [119, 120] and adiabatic [121-123] proton transfer reactions. The most recent theoretical advancement has incorporated both solvent reorganization and proton tunneling and made the framework similar to electron transfer reaction, [119-126] such that the proton transfer rate kpt can be categorized into two regimes (a) For nonadiabatic limit [120] ... [Pg.248]

Fig. 12.2. Free energy data for electron transfer between the protein cytochrome c and the small acceptor microperoxidase-8 (MP8), from recent simulations [47]. Top Gibbs free energy derivative versus the coupling parameter A. The data correspond to solvated cytochrome c the MP8 contribution is not shown (adapted from [47]) Bottom the Marcus diabatic free energy curves. The simulation data correspond to cyt c and MP8, infinitely separated in aqueous solution. The curves intersect at 77 = 0, as they should. The reaction free energy is decomposed into a static and relaxation component, using the two steps shown by arrows a static, vertical step, then relaxation into the product state. All free energies in kcalmol-1. Adapted with permission from reference [88]... Fig. 12.2. Free energy data for electron transfer between the protein cytochrome c and the small acceptor microperoxidase-8 (MP8), from recent simulations [47]. Top Gibbs free energy derivative versus the coupling parameter A. The data correspond to solvated cytochrome c the MP8 contribution is not shown (adapted from [47]) Bottom the Marcus diabatic free energy curves. The simulation data correspond to cyt c and MP8, infinitely separated in aqueous solution. The curves intersect at 77 = 0, as they should. The reaction free energy is decomposed into a static and relaxation component, using the two steps shown by arrows a static, vertical step, then relaxation into the product state. All free energies in kcalmol-1. Adapted with permission from reference [88]...
The several theoretical and/or simulation methods developed for modelling the solvation phenomena can be applied to the treatment of solvent effects on chemical reactivity. A variety of systems - ranging from small molecules to very large ones, such as biomolecules [236-238], biological membranes [239] and polymers [240] -and problems - mechanism of organic reactions [25, 79, 223, 241-247], chemical reactions in supercritical fluids [216, 248-250], ultrafast spectroscopy [251-255], electrochemical processes [256, 257], proton transfer [74, 75, 231], electron transfer [76, 77, 104, 258-261], charge transfer reactions and complexes [262-264], molecular and ionic spectra and excited states [24, 265-268], solvent-induced polarizability [221, 269], reaction dynamics [28, 78, 270-276], isomerization [110, 277-279], tautomeric equilibrium [280-282], conformational changes [283], dissociation reactions [199, 200, 227], stability [284] - have been treated by these techniques. Some of these... [Pg.339]

Until now, the isotopic effect was discnssed only in relation to the reactants. In electron-transfer reactions, the solvent plays an eqnally important role. As mentioned, different solvate forms are possible for reactants, transition states, and products. Therefore, it seems important to find a reaction where the kinetic effect resulting from the introduction of an isotope would be present for solvents, but absent for reactants. For a published work concerning this problem, refer Yusupov and Hairutdinov (1987). In this work, the authors studied photoinduced electron transfer from magnesium ethioporphyrin to chloroform followed by a dark recombination of ion-radicals in frozen alcohol solutions. It was determined that the deuteration of chloroform does not affect the rate of transfer, whereas deuteration of the solvent reduces it. The authors correlate these results with the participation of solvent vibrational modes in the manner of energy diffraction during electron transfer. [Pg.120]

Temperature and pressure effects on rate constants for [Fe(phen)3] +/[Fe(phen)3] + electron transfer in water and in acetonitrile have yielded activation parameters AF was discussed in relation to possible nonadiabaticity and solvation contributions. Solvation effects on AF° for [Fe(diimine)3] " " " " half-cells, related diimine/cyanide ternary systems (diimine = phen, bipy), and also [Fe(CN)6] and Fe aq/Fe aq, have been assessed. Initial state-transition state analyses for base hydrolysis and for peroxodisulfate oxidation for [Fe(diimine)3] +, [Fe(tsb)2] ", [Fe(cage)] " " in DMSO-water mixtures suggest that base hydrolysis is generally controlled by hydroxide (de)hydration, but that in peroxodisulfate oxidation solvation changes for both reactants are significant in determining the overall reactivity pattern. ... [Pg.450]

Mott transition, 25 170-172 paramagnetic states, 25 148-161, 165-169 continuum model, 25 159-161 ESR. studies, 25 152-157 multistate model, 25 159 optical spectra, 25 157-159 and solvated electrons, 25 138-142 quantitative theory, 25 138-142 spin-equilibria complexes, 32 2-3, see also specific complex four-coordinated d type, 32 2 implications, 32 43-44 excited states, 32 47-48 porphyrins and heme proteins, 32 48-49 electron transfer, 32 45-46 race-mization and isomerization, 32 44—45 substitution, 32 46 in solid state, 32 36-39 lifetime limits, 32 37-38 measured rates, 32 38-39 in solution, 32 22-36 static properties electronic spectra, 32 12-13 geometric structure, 32 6-11 magnetic susceptibility, 32 4-6 vibrational spectra, 32 13 summary and interpretation... [Pg.182]

In a paper, Jortner stated that information about solvation dynamics can be obtained from (1) solvation of the electron, (2) solvation of a dipole, and (3) extracting information from the rates of electron transfer reaction [3,4]. We have added to these... [Pg.159]

It has been argued [235] by analogy with the case of molecules adsorbed on glassy n-hexane [232] that this enhancement is due to the electron transfer to CF2CI2 of an electron previously captured in a precursor state of the solvated electron in the water layer, which lies at and just below the vacuum level [300,301] and the subsequent. Similar results have been reported for HCl adsorbed on water ice [236]. It has been proposed that enhanced DEA to CF2CI2 via electron transfer from precursor-solvated states in ice [235] may explain an apparent correlation between cosmic ray activity (which would generate secondary LEE in ice crystals) and atmospheric ozone loss [11]. The same electron transfer mechanism may contribute to the marked enhancement in electron, and x-ray-induced dissociation for halo-uracil molecules is deposited inside water ice matrices [39]. [Pg.250]


See other pages where Electron transfer solvation states is mentioned: [Pg.694]    [Pg.263]    [Pg.16]    [Pg.151]    [Pg.208]    [Pg.209]    [Pg.211]    [Pg.667]    [Pg.34]    [Pg.150]    [Pg.213]    [Pg.279]    [Pg.235]    [Pg.192]    [Pg.205]    [Pg.225]    [Pg.158]    [Pg.19]    [Pg.149]    [Pg.81]    [Pg.65]    [Pg.341]    [Pg.40]    [Pg.45]    [Pg.33]    [Pg.33]    [Pg.263]    [Pg.62]    [Pg.102]    [Pg.62]    [Pg.85]    [Pg.86]    [Pg.295]    [Pg.301]    [Pg.243]    [Pg.243]    [Pg.413]    [Pg.581]    [Pg.34]    [Pg.493]    [Pg.139]    [Pg.267]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



Electron solvated

Solvated electron Solvation

Solvation state

© 2024 chempedia.info