Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-transfer reactions oxygen

This chapter will describe methods used to generate cations for their photochemical studies, as well as the characterization of their singlet and triplet excited states. Mechanistic studies of excited state carbocations are described, including reactions with nucleophilic species, electron transfer reactions, oxygen quenching, and isomerization processes. [Pg.148]

The most conspicuous use of iron in biological systems is in our blood, where the erythrocytes are filled with the oxygen-binding protein hemoglobin. The red color of blood is due to the iron atom bound to the heme group in hemoglobin. Similar heme-bound iron atoms are present in a number of proteins involved in electron-transfer reactions, notably cytochromes. A chemically more sophisticated use of iron is found in an enzyme, ribo nucleotide reductase, that catalyzes the conversion of ribonucleotides to deoxyribonucleotides, an important step in the synthesis of the building blocks of DNA. [Pg.11]

Nickel(IV) complexes react with dimethyl sulphoxide in acidic solution to give the sulphone and nickel(II) ions. The kinetics of this reaction have been studied and found to be very complex in nature. The reaction probably proceeds by initial complexation of the dimethyl sulphoxide to the nickel(IV) species followed by electron transfer and oxygen atom transfer producing the observed products149. [Pg.985]

On the other hand. Type II process competes efficiently with the electron-transfer pathway in aerobic environments where the concentration of ground triplet state molecular oxygen is relatively high ( 0.27 mM), and singlet molecular oxygen (1O2) is the most abimdant ROS generated under these conditions, with a quantum yield 0.48 (Valle et al., 2011), eqn. 8. It is also possible an electron-transfer reaction from 3RF to 02 to form anion superoxide, but this reaction occurs with very low efficiency <0.1% (Lu et al., 2000). [Pg.12]

Metallic iron is made up of neutral iron atoms held together by shared electrons (see Section 10.7). The formation of rust involves electron-transfer reactions. Iron atoms lose three electrons each, forming Fe cations. At the same time, molecular oxygen gains electrons from the metal, each molecule adding four electrons to form a pair of oxide anions. As our inset figure shows, the Fe cations combine with O anions to form insoluble F 2 O3, rust. Over time, the surface of an iron object becomes covered with flaky iron(ni) oxide and pitted from loss of iron atoms. [Pg.1350]

Electron-transfer reactions occur all around us. Objects made of iron become coated with mst when they are exposed to moist air. Animals obtain energy from the reaction of carbohydrates with oxygen to form carbon dioxide and water. Turning on a flashlight generates a current of electricity from a chemical reaction in the batteries. In an aluminum refinery, huge quantities of electricity drive the conversion of aluminum oxide into aluminum metal. These different chemical processes share one common feature Each is an oxidation-reduction reaction, commonly called a redox reaction, in which electrons are transferred from one chemical species to another. [Pg.1351]

Fig. 1 Schematic mechanism for the long-distance oxidation of DNA. Irradiation of the anthraquinone (AQ) and intersystem crossing (ISC) forms the triplet excited state (AQ 3), which is the species that accepts an electron from a DNA base (B) and leads to products. Electron transfer to the singlet excited state of the anthraquinone (AQ 1) leads only to back electron transfer. The anthraquinone radical anion (AQ ) formed in the electron transfer reaction is consumed by reaction with oxygen, which is reduced to superoxide. This process leaves a base radical cation (B+-, a hole ) in the DNA with no partner for annihilation, which provides time for it to hop through the DNA until it is trapped by water (usually at a GG step) to form a product, 7,8-dihydro-8-oxoguanine (8-OxoG)... Fig. 1 Schematic mechanism for the long-distance oxidation of DNA. Irradiation of the anthraquinone (AQ) and intersystem crossing (ISC) forms the triplet excited state (AQ 3), which is the species that accepts an electron from a DNA base (B) and leads to products. Electron transfer to the singlet excited state of the anthraquinone (AQ 1) leads only to back electron transfer. The anthraquinone radical anion (AQ ) formed in the electron transfer reaction is consumed by reaction with oxygen, which is reduced to superoxide. This process leaves a base radical cation (B+-, a hole ) in the DNA with no partner for annihilation, which provides time for it to hop through the DNA until it is trapped by water (usually at a GG step) to form a product, 7,8-dihydro-8-oxoguanine (8-OxoG)...
B.C. King and F.M. Hawkridge, A study of the electron transfer and oxygen binding reactions of myoglobin. J. Electroanal. Chem. 237, 81-92 (1987). [Pg.597]

Electrochemiluminescence Emission occurring in solution, from an electronically excited state produced by high-energy electron transfer reactions Electrogenerated chemiluminescence Emission produced at an electrode surface Oxyluminescence Emission from polymers caused by oxidative processes (presence of oxygen is required)... [Pg.42]

Lakshminarasimhan, P., Thomas, K.J., Johnston, L.J. and Ramamurthy, V. (2000). Wavelength dependent oxygen mediated electron-transfer reactions within M+ Y zeolites photooxidation and reduction of 1,1-diarylethylenes. Langmuir 16, 9360-9367... [Pg.269]

The main role of the metal catalysts is to enhance the O2 + e — 02 transition or mediate the electron transfer between oxygen and substrate (S) via an alternative path. The following basic reaction schemes can be envisioned ... [Pg.398]

Acylsilanes are a class of compounds in which a silyl group is directly bound to the carbonyl carbon, and they have received considerable research interest from the point of view of both physical organic and synthetic organic chemistry [15]. Acylsilanes have a structure quite similar to the structure of a-silyl-substituted ethers a silyl group is attached to the carbon adjacent to the oxygen atom, although the nature of the C-O bond is different. Therefore, one can expect /1-silicon effects in the electron-transfer reactions of acylsilanes. [Pg.58]

The introduction of an electron-withdrawing group such as acetyl at the oxime oxygen will decrease the intramolecular electron transfer reaction from the nitrogen lone pair and will enhance the aza-di-jr-methane rearrangement134-138 (equation 78). [Pg.716]

These Ionic reactions or electron transfer reactions are not what generally occur in the structure of both natural and synthetic polymers. In polymers it is the covalent bond that dominates, and in a covalently bonded structure there is no transfer of electrons from one atom to another. Instead the electrons are shared between the adjacent atoms In the molecule. The commercial polymeric materials that will be covered In this text will generally be based on seven atomic species silicon, hydrogen, chlorine, carbon, oxygen, nitrogen, and sulfur. Figure 2.4 shows these atoms with the number of outer valance electrons. [Pg.30]

Oxaziranes are in a real sense active oxygen compounds and exhibit many reactions grossly analogous to those of organic peroxides. Thus they undergo one electron transfer reaction with ferrous salts and on pyrolysis they are converted to amides. Oxaziranes are also useful synthetic intermediates since in appropriate cases they may be isomerized to aromatic nitrones which are a convenient source of N-alkylhydroxylamines. The reaction of oxaziranes with peracids also provides a source of nitrosoal-kanes and is in many instances the method of choice for preparation of these compounds. ... [Pg.90]

The majority of the enzyme-catalyzed reactions discussed so far are oxidative ones. However, reductive electron transfer reactions take place as well. Diaphorase, xanteneoxidase, and other enzymes as well as intestinal flora, aquatic, and skin bacteria—all of them can act as electron donors. Another source of an electron is the superoxide ion. It arises after detoxification of xenobiotics, which are involved in the metabolic chain. Under the neutralizing influence of redox proteins, xenobiotics yield anion-radicals. Oxygen, which is inhaled with air, strips unpaired electrons from these anion-radicals and gives the superoxide ions (Mason and Chignell 1982). [Pg.194]

These aggravating reactions proceed at room temperature or under moderate heating up to 60°C without light excitation and in the absence of oxygen, that is, in conditions common to electron-transfer reactions. (Some of these reactions just take place in nonpolar solvents of the decane or xylene type.) Hence, application of nitrosobenzene as spin traps can be complicated by solvent participation. [Pg.230]

Among the surface-modified CNTs materials, a bulk-modified CNT paste (CNTP) has also been reported [126]. The new composite electrode combined the ability of CNTs to promote adsorption and electron-transfer reactions with the attractive properties of the composite materials. The CNTP was prepared by mixing MWCNTs powder (diameter 20-50 nm, length 1-5 jim) and mineral oil in a 60 30 ratio. The oxidation pretreatment [performed in ABS (pH 5.0) for 20 s at 1.30 V, vs Ag/AgCl] proved to be critical in the state of the CNTP surface. Pretreatments improved the adsorption and electrooxidation of both DNA and DNA bases, probably due to the increase in the density of oxygenated groups. [Pg.32]

Cyclopropane doivatives of various structure types are involved in electron transfer-induced oxygenation reactions. For example, the photoreaction of 9,10-di-cyanoanthracene with 1,2-diarylcyclopropanes generates a mixture of cis- and... [Pg.294]

In an electron transfer reaction, an element undergoing oxidation loses electrons, whereas an element gaining electrons undergoes reduction. In the aluminum-oxygen example, the aluminum was oxidized, and the oxygen was reduced because every electron tranter reaction involves simultaneous oxidation and reduction. These reactions are frequently called redox reactions. [Pg.114]

Electrocatalytic Reduction of Dioxygen The electrocatalytic reduction of oxygen is another multi-electron transfer reaction (four electrons are involved) with several steps and intermediate species [16]. A four-electron mechanism, leading to water, is in competition with a two-electron mechanism, giving hydrogen peroxide. The four-electron mechanism on a Pt electrode can be written as follows ... [Pg.14]


See other pages where Electron-transfer reactions oxygen is mentioned: [Pg.2991]    [Pg.215]    [Pg.243]    [Pg.1289]    [Pg.118]    [Pg.125]    [Pg.247]    [Pg.429]    [Pg.219]    [Pg.313]    [Pg.653]    [Pg.11]    [Pg.572]    [Pg.500]    [Pg.480]    [Pg.261]    [Pg.324]    [Pg.220]    [Pg.339]    [Pg.137]    [Pg.88]    [Pg.67]    [Pg.146]    [Pg.53]    [Pg.55]    [Pg.272]    [Pg.206]    [Pg.269]    [Pg.418]   
See also in sourсe #XX -- [ Pg.85 , Pg.86 , Pg.87 , Pg.88 , Pg.89 ]




SEARCH



Electron oxygen

Oxygen transfer reactions

Oxygen transferate

© 2024 chempedia.info