Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-transfer processes outer-sphere mechanism

Romanian scientists compared one-electron transfer reactions from triphenylmethyl or 2-methyl benzoyl chloride to nitrobenzene in thermal (210°C) conditions and on ultrasonic stimulation at 50°C (lancu et al. 1992, Vinatoru et al. 1994, Chivu et al. 2006). In the first step, the chloride cation-radical and the nitrobenzene anion-radicals are formed. In the thermal and acoustic variants, the reactions lead to the same set of products with one important exception The thermal reaction results in the formation of HCl, whereas ultrasonic stimulation results in CI2 evolution. At present, it is difficult to elucidate the mechanisms behind these two reactions. As an important conclusion, the sonochemical process goes through the inner-sphere electron transfer. The outer-sphere electron transfer mechanism is operative in the thermally induced process. [Pg.281]

Electron transfer between metal ions contained in complexes can occur in two different ways, depending on the nature of the metal complexes that are present. If the complexes are inert, electron transfer occurring faster than the substitution processes must occur without breaking the bond between the metal and ligand. Such electron transfers are said to take place by an outer sphere mechanism. Thus, each metal ion remains attached to its original ligands and the electron is transferred through the coordination spheres of the metal ions. [Pg.725]

Traditionally, electron transfer processes in solution and at surfaces have been classified into outer-sphere and inner-sphere mechanisms (1). However, the experimental basis for the quantitative distinction between these mechanisms is not completely clear, especially when electron transfer is not accompanied by either atom or ligand transfer (i.e., the bridged activated complex). We wish to describe how the advantage of using organometals and alkyl radicals as electron donors accrues from the wide structural variations in their donor abilities and steric properties which can be achieved as a result of branching the alkyl moiety at either the a- or g-carbon centers. [Pg.113]

The prospects for electron transfer mechanisms clearly extend beyond inorganic chemistry into the broad regions of organometal-lic and organic systems. Pushed to these limits, adequate quantitative criteria will be needed to delineate outer-sphere from inner-sphere mechanisms. However, the extent to which theoretical studies will provide more concrete guidelines of predictive value will determine whether electron transfer processes will form the basis of reaction mechanisms into the next century. [Pg.146]

Cytochrome c is responsible for accepting an electron from cytochrome Ci and transferring it to cytochrome c oxidase. The electron transfer reaction may occur via the exposed portion of the ring or by tunnelling through the protein (and involving an outer-sphere mechanism). The details of this process have not been fully elucidated and have remained the focus of much research. [Pg.241]

One final point should be noted. Theoretical discussions of electron transfer processes have focused almost entirely on outer-sphere processes. When we have an inner-sphere mechanism, or sufficient electronic interaction in a dynamically trapped mixed-valence complex to produce a large separation between upper and lower potential surfaces, the usual weak-interaction approach has to be abandoned. Thus a detailed knowledge of a potential surface which is not describable as an intersection surface of perturbed harmonic surfaces, for example, is required. For this purpose, detailed calculations will be required. The theory of these processes will be linked more... [Pg.134]

In this picture, the electron transfer processes mediated by metallic electrodes (redox reactions in a heterogeneous phase) can also be classified to proceed according to outer-sphere or inner-sphere mechanisms (obviously, considering the electrode surface as a reagent). [Pg.9]

The most important single development in the understanding of the mechanisms of redox reactions has probably been the recognition and establishment of outer-sphere and inner-sphere processes. Outer-sphere electron transfer involves intact (although not completely undisturbed) coordination shells of the reactants. In inner-sphere redox reactions, there are marked changes in the coordination spheres of the reactants in the formation of the activated complex. [Pg.258]

The rate-controlling step in reductive dissolution of oxides is surface chemical reaction control. The dissolution process involves a series of ligand-substitution and electron-transfer reactions. Two general mechanisms for electron transfer between metal ion complexes and organic compounds have been proposed (Stone, 1986) inner-sphere and outer-sphere. Both mechanisms involve the formation of a precursor complex, electron transfer with the complex, and subsequent breakdown of the successor complex (Stone, 1986). In the inner-sphere mechanism, the reductant... [Pg.164]

In recent years, there has been a great deal of interest in the mechanisms of electron transfer processes.52-60 It is now recognized that oxidation-reduction reactions involving metal ions and their complexes are mainly of two types inner-sphere (ligand transfer) and outer-sphere (electron transfer) reactions. Prototypes of these two processes are represented by the following reactions. [Pg.283]

Further work by Flowers examined the role of solvent polarity in the electron transfer process.30 Inner-sphere electron transfer kinetics show a weak dependence on solvent polarity due to the considerable orbital overlap of the donor-acceptor pair in the transition state. In an outer-sphere process, changes in solvent polarity alter the energetics of electron transfer. The addition of excess HMPA, beyond that required to saturate Sml2, resulted in a linear correlation to the rate of reduction for alkyl iodides, whereas no impact was observed on the rate of ketone reduction.30 Thus the experiments showed a striking difference in the electron transfer mechanism for the substrate classes, which is consistent with the operation of an outer-sphere-type process for the reduction of alkyl iodides and an inner-sphere-type mechanism for the reduction of ketones.30 These findings are consistent with the observations of Daasbjerg and Skrydstrup.28,29... [Pg.34]

If, whatever the interest of conceiving electron-pair transfer reactions such as Sn2 substitution as an inner sphere electron-transfer process, single electron transfer is intended to qualify reactions in which the rate-determining step is an outer sphere, non-dissociative or dissociative electron-transfer step preceding the bond-formation step, then the answer is no. There are a number of cases where true SN2 mechanisms (in which the bond-breaking and bond-formation steps are concerted) do occur, even with nucleophiles that are members of reversible one-electron reversible redox couples. In terms of activation energy, the SN2 mechanism merges with the outer sphere, dissociative electron-transfer mechanism when the bonded interactions in the transition state vanish. Steric constraints at the electro-... [Pg.119]

It is generally believed that the oxidation of thiourea and related compounds by aqua-metal ions involves an inner-sphere electron-transfer process, whereas an outer-sphere mechanism is more commonly associated with substitution-inert complexes. The stoichiometry of redox reactions with one-electron oxidizing agents is different for acid and alkaline media. The oxidation of both thiourea and thioacetamide by [Mo(CN)g] in the range 0.02 < [HCIO4] < 0.08 M proceeds in a 1 1 ratio, yielding the disulfide as a product (108) ... [Pg.277]

Redox processes between metal complexes are divided into outer-sphere processes and inner-sphere processes that involve a ligand common to both coordination spheres. The distinction is fundamentally between reactions in which electron transfer takes place from one primary bond system to another (outer-sphere mechanism) and those in which electron transfer takes place within a primary bond system (inner-sphere mechanism) (Taube, 1970). [Pg.284]


See other pages where Electron-transfer processes outer-sphere mechanism is mentioned: [Pg.219]    [Pg.280]    [Pg.318]    [Pg.352]    [Pg.190]    [Pg.154]    [Pg.472]    [Pg.112]    [Pg.118]    [Pg.124]    [Pg.146]    [Pg.239]    [Pg.52]    [Pg.12]    [Pg.119]    [Pg.210]    [Pg.325]    [Pg.1050]    [Pg.33]    [Pg.84]    [Pg.89]    [Pg.87]    [Pg.305]    [Pg.310]    [Pg.8]    [Pg.322]    [Pg.223]    [Pg.1179]    [Pg.6460]    [Pg.237]    [Pg.155]    [Pg.1449]    [Pg.332]    [Pg.20]    [Pg.216]    [Pg.111]   
See also in sourсe #XX -- [ Pg.895 , Pg.897 , Pg.898 , Pg.899 ]

See also in sourсe #XX -- [ Pg.991 ]




SEARCH



Electron mechanisms

Electron processes

Electron transfer mechanisms

Electron transferring mechanism

Electron-transfer processes

Electronic processes

Mechanical process

Mechanisms outer-sphere mechanism

Mechanisms process

Outer mechanism

Outer sphere

Outer sphere electron

Outer-sphere electron transfer

Outer-sphere processes

Processing mechanics

Processive mechanism

Sphere Electron Transfer

Transfer mechanism

© 2024 chempedia.info