Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron transfer precursor complex

The other way to study the "conductivity of protein molecules towards electron tunneling is to investigate the quenching of luminescence of electron-excited simple molecules by redox sites of proteins [95,96]. Experiments of this sort on reduced blue copper proteins have involved electron-excited Ru(II)(bpy)3, Cr(III)(phen)3, and Co(III)(phen)3 as oxidants. The kinetics of these reactions exhibit saturation at protein concentrations of 10 3 M, suggesting that, at high protein concentrations, the excited reagent is bound to reduced protein in an electron transfer precursor complex. Extensive data have been obtained for the reaction of reduced bean plastocyanin Pl(Cu(I)) with Cr(III)(phen)3. To analyze quenching experimental data, a mechanistic model that includes both 1 1 and 2 1 [Pl(Cu(I))/ Cr(III)(phen)3] complexes was considered [96]... [Pg.307]

The reactions [VO(edta)] ++[V(edta)] and [VO(hedta)]-+[V(hedta)]- produce transient red colours. These are attributed to precursor complexes of the type Lv vov L and the subsequent decay of absorbance is taken to be the electron transfer, yielding complexes LV OV L which the authors have also characterized in solution. ... [Pg.18]

Inner-sphere. Here, the two reactants first form a bridged complex (precursor)- intramolecular electron transfer then yields the successor which in turn dissociates to give the products. The first demonstration of this was provided by H. Taube. He examined the oxidation of ICrfHoOijj by lCoCl(NHr)< and postulated that it occurs as follows ... [Pg.1124]

The symmetric series provides functional cyclohexadienes, whereas the non-symmetric one serves to build deuterated and/or functional arenes and tentacled compounds. In both series, several oxidation states can be used as precursors and provide different types of activation. The complexes bearing a number of valence, electrons over 18 react primarily by electron-transfer (ET). The ability of the sandwich structure to stabilize several oxidation states [21] also allows us to use them as ET reagents in stoichiometric and catalytic ET processes [18, 21, 22]. The last well-developed type of reactions is the nucleophilic substitution of one or two chlorine atoms in the FeCp+ complexes of mono- and o-dichlorobenzene. This chemistry is at least as rich as with the Cr(CO)3 activating group and more facile since FeCp+ activator is stronger than Cr(CO) 3. [Pg.50]

The voltammograms at the microhole-supported ITIES were analyzed using the Tomes criterion [34], which predicts ii3/4 — iii/4l = 56.4/n mV (where n is the number of electrons transferred and E- i and 1/4 refer to the three-quarter and one-quarter potentials, respectively) for a reversible ET reaction. An attempt was made to use the deviations from the reversible behavior to estimate kinetic parameters using the method previously developed for UMEs [21,27]. However, the shape of measured voltammograms was imperfect, and the slope of the semilogarithmic plot observed was much lower than expected from the theory. It was concluded that voltammetry at micro-ITIES is not suitable for ET kinetic measurements because of insufficient accuracy and repeatability [16]. Those experiments may have been affected by reactions involving the supporting electrolytes, ion transfers, and interfacial precipitation. It is also possible that the data was at variance with the Butler-Volmer model because the overall reaction rate was only weakly potential-dependent [35] and/or limited by the precursor complex formation at the interface [33b]. [Pg.397]

This association has its counterpart that was also variously described as an encounter complex, a nonbonded electron donor-acceptor (EDA) complex, a precursor complex, and a contact charge-transfer complex.10 For electrically charged species such as anion/cation pairs (which are relevant to ion-pair annihilation), the pre-equilibrium association results in contact ion pairs (CIP)7 (equation 3)... [Pg.196]

Evaluation of the Work Term from Charge Transfer Spectral Data. The intermolecular interaction leading to the precursor complex in Scheme IV is reminiscent of the electron donor-acceptor or EDA complexes formed between electron donors and acceptors (21). The latter is characterized by the presence of a new absorption band in the electronic spectrum. According to the Mulliken charge transfer (CT) theory for weak EDA complexes, the absorption maximum hv rp corresponds to the vertical (Franck-Condon) transition from the neutral ground state to the polar excited state (22). [Pg.138]

At first sight, these strong effects might not seem to be predictable, given that the ferrocene reactant is uncharged and thus the formation of the precursor complex should be unaffected by the charge of the other reactant. The reaction of the ion-paired species, however, is not a simple electron-transfer reaction, because transfer of the anion must also occur. A detailed understanding of the dynamics of the process remains to be developed. [Pg.359]

The model shown in Scheme 2 indicates that a change in the formal oxidation state of the metal is not necessarily required during the catalytic reaction. This raises a fundamental question. Does the metal ion have to possess specific redox properties in order to be an efficient catalyst A definite answer to this question cannot be given. Nevertheless, catalytic autoxidation reactions have been reported almost exclusively with metal ions which are susceptible to redox reactions under ambient conditions. This is a strong indication that intramolecular electron transfer occurs within the MS"+ and/or MS-O2 precursor complexes. Partial oxidation or reduction of the metal center obviously alters the electronic structure of the substrate and/or dioxygen. In a few cases, direct spectroscopic or other evidence was reported to prove such an internal charge transfer process. This electronic distortion is most likely necessary to activate the substrate and/or dioxygen before the actual electron transfer takes place. For a few systems where deviations from this pattern were found, the presence of trace amounts of catalytically active impurities are suspected to be the cause. In other words, the catalytic effect is due to the impurity and not to the bulk metal ion in these cases. [Pg.400]

The third ligand was assumed to be coordinated to the metal center via the deprotonated 3-hydroxy and 4-carbonyl groups. This coordination mode allows delocalization of the electronic structure and intermolecu-lar electron transfer from the ligand to Cu(II). The Cu(I)-flavonoxy radical is in equilibrium with the precursor complex and formed at relatively low concentration levels. This species is attacked by dioxygen presumably at the C2 carbon atom of the flavonoxyl ligand. In principle, such an attack may also occur at the Cu(I) center, but because of the crowded coordination sphere of the metal ion it seems to be less favourable. The reaction is completed by the formation and fast rearrangement of a trioxametallocycle. [Pg.442]

Table IV lists a series of octahedral (phenolato)chromium(III) precursor complexes that contain one or three oxidizable coordinated phenolato pendent arms (146, 154). These complexes display characteristic electrochemistry Each coordinated phenolato ligand can undergo a reversible one-electron oxidation. Thus complexes with one phenolato moiety exhibit in the C V one reversible electron-transfer process, whereas those having three display three closely spaced (AE1/2 250 mV) ligand-centered one-electron transfer processes, Eqs. (7) and (8). Table IV lists a series of octahedral (phenolato)chromium(III) precursor complexes that contain one or three oxidizable coordinated phenolato pendent arms (146, 154). These complexes display characteristic electrochemistry Each coordinated phenolato ligand can undergo a reversible one-electron oxidation. Thus complexes with one phenolato moiety exhibit in the C V one reversible electron-transfer process, whereas those having three display three closely spaced (AE1/2 250 mV) ligand-centered one-electron transfer processes, Eqs. (7) and (8).
The coordination chemistry of (phenoxyl)manganese complexes is rather more complicated because both metal- and ligand-centered electron-transfer processes are accessible in the normal potential range. The phenolato precursors are known to exist with manganesc(II), (III), and even (IV). In fact, three phenolato groups strongly stabilize the Mn(IV) oxidation state. [Pg.176]

Rates of reductive dissolution of transition metal oxide/hydroxide minerals are controlled by rates of surface chemical reactions under most conditions of environmental and geochemical interest. This paper examines the mechanisms of reductive dissolution through a discussion of relevant elementary reaction processes. Reductive dissolution occurs via (i) surface precursor complex formation between reductant molecules and oxide surface sites, (ii) electron transfer within this surface complex, and (iii) breakdown of the successor complex and release of dissolved metal ions. Surface speciation is an important determinant of rates of individual surface chemical reactions and overall rates of reductive dissolution. [Pg.446]

Similarly, inner-sphere and outer-sphere mechanisms can be postulated for the reductive dissolution of metal oxide surface sites, as shown in Figure 2. Precursor complex formation, electron transfer, and breakdown of the successor complex can still be distinguished. The surface chemical reaction is unique, however, in that participating metal centers are bound within an oxide/hydroxide... [Pg.448]

Surface Coverage and Reaction Rate. If precursor complex formation is fast relative to electron transfer and product release, it can be treated as a quasi-equilibrium step ... [Pg.455]

The most direct evidence for surface precursor complex formation prior to electron transfer comes from a study of photoreduc-tive dissolution of iron oxide particles by citrate (37). Citrate adsorbs to iron oxide surface sites under dark conditions, but reduces surface sites at an appreciable rate only under illumination. Thus, citrate surface coverage can be measured in the dark, then correlated with rates of reductive dissolution under illumination. Results show that initial dissolution rates are directly related to the amount of surface bound citrate (37). Adsorption of calcium and phosphate has been found to inhibit reductive dissolution of manganese oxide by hydroquinone (33). The most likely explanation is that adsorbed calcium or phosphate molecules block inner-sphere complex formation between metal oxide surface sites and hydroquinone. [Pg.456]


See other pages where Electron transfer precursor complex is mentioned: [Pg.72]    [Pg.48]    [Pg.72]    [Pg.48]    [Pg.18]    [Pg.434]    [Pg.141]    [Pg.172]    [Pg.606]    [Pg.40]    [Pg.79]    [Pg.266]    [Pg.588]    [Pg.140]    [Pg.152]    [Pg.662]    [Pg.21]    [Pg.122]    [Pg.371]    [Pg.440]    [Pg.435]    [Pg.118]    [Pg.148]    [Pg.148]    [Pg.149]    [Pg.187]    [Pg.40]    [Pg.130]    [Pg.186]    [Pg.198]    [Pg.222]    [Pg.329]    [Pg.447]    [Pg.448]    [Pg.451]    [Pg.457]    [Pg.459]   
See also in sourсe #XX -- [ Pg.593 , Pg.594 , Pg.600 ]

See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Electron transfer complexation

Electron-transfer complexes

Precursor complex electron-transfer mechanism

Precursor complex inner-sphere electron transfer

Precursor complex outer-sphere electron transfer

© 2024 chempedia.info