Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homogenous Electron Transfer

During the past four decades the dynamics and mechanisms of electron-transfer processes have been studied via the application of transition-state theory to the kinetics for electrochemical processes. As a result, both the kinetics of the electron-transfer processes (from solid electrode to the solution species) as well as of pre- and post-electron-transfer homogeneous processes can be characterized quantitatively. [Pg.2]

The oxidation potential of the substrate S in Figure 2 is beyond the range accessible by the electrochemical method so that direct electron transfer from S to the anode hardly occurs, and also the high oxidation potential necessary for the direct oxidation of S causes unexpected side reactions involving oxidation of the solvent or supporting electrolyte. However, when a compound Mrxi (a reduced form of M) which may be oxidized at a sufficiently lower potential than S is added to the reaction system, the oxidation of Mied to Mox (an oxidized form of M) will take place prior to the oxidation of S. Provided that Mox is able to oxidize S to product P, the oxi tion of S will be achieved at a potential lower than that necessary for its direct oxidation. Oxidation of S with Mox may be effected in two ways, namely by direct electron transfer (homogeneous electron transfer) from S to Mox in solution or by chemical oxidation of S with Mox. The former system is called a homomediatory system and the latter a heteromediatory (or chemomediatory) system. The compound M is called a mediator or an electron carrier, since M mediates electron transfer between S and the anode. When Mox oxidizes S in solution, Mox is reduced to Mrxi... [Pg.807]

Marra, A, Mallet, J-M, Amatore, C, Sinay, P, Glycosylation using a one-electron-transfer homogeneous reagent a novel and efficient synthesis of p-linked disaccharides, Synlett, 572-574, 1990. [Pg.181]

ECE heterogeneous electron transfer, homogeneous chemical reaction, 12.1.1... [Pg.850]

Usual conditions for LSV or CV experiments require a quiet solution in order to allow undisturbed development of the diffusion layer at the electrode. Some groups, however, have purposely used the interplay between diffusion and convection in electrolytes flowing in a channel or similar devices [23]. In these experiments (see also Chapter 2.4), mass transport to the electrode surface is dramatically enhanced. A steady state develops [54] with a diffusion layer of constant thickness. Thus, such conditions are in some way similar to the use of ultramicroelectrodes. Hydro-dynamic voltammetry is advantageous in studying processes (heterogeneous electron transfer, homogeneous kinetics) that are faster than mass transport under usual CV or LSV conditions. A recent review provides several examples [22]. [Pg.95]

The nature of electrode processes can, of course, be more complex and also involve phase fonnation, homogeneous chemical reactions, adsorption or multiple electron transfer [1, 2, 3 and 4],... [Pg.1923]

Double potential steps are usefiil to investigate the kinetics of homogeneous chemical reactions following electron transfer. In this case, after the first step—raising to a potential where the reduction of O to occurs under diffrision control—the potential is stepped back after a period i, to a value where tlie reduction of O is mass-transport controlled. The two transients can then be compared and tlie kinetic infomiation obtained by lookmg at the ratio of... [Pg.1929]

The equation does not take into account such pertubation factors as steric effects, solvent effects, and ion-pair formation. These factors, however, may be neglected when experiments are carried out in the same solvent at the same temperature and concentration for an homogeneous set of substrates. So, for a given ambident nucleophile the rate ratio kj/kj will depend on A and B, which vary with (a) the attacked electrophilic center, (b) the solvent, and (c) the counterpart cationic species of the anion. The important point in this kind of study is to change only one parameter at a time. This simple rule has not always been followed, and little systematic work has been done in this field (12) stiH widely open after the discovery of the role played by single electron transfer mechanism in ambident reactivity (1689). [Pg.6]

Electron transfer reactions involving alkali metals are heterogeneous, and for many purposes it is desirable to deal with a homogeneous electron transfer system. It was noticed by Scott39 that sodium and other alkali metals react rapidly with aromatic hydrocarbons like diphenyl, naphthalene, anthracene, etc., giving intensely colored complexes of a 1 to 1 ratio of sodium to hydro-... [Pg.153]

Solution of alkali metals in liquid ammonia, containing the so-called solvating electrons, may be used as an alternative homogeneous system to initiate polymerization by an electron transfer process. This system suffers, however, from complications resulting from proton transfer from ammonia leading to the formation of NH2- ions, which in turn initiate further polymerization.4... [Pg.155]

References to a number of other kinetic studies of the decomposition of Ni(HC02)2 have been given [375]. Erofe evet al. [1026] observed that doping altered the rate of reaction of this solid and, from conductivity data, concluded that the initial step involves electron transfer (HCOO- - HCOO +e-). Fox et al. [118], using particles of homogeneous size, showed that both the reaction rate and the shape of a time curves were sensitive to the mean particle diameter. However, since the reported measurements refer to reactions at different temperatures, it is at least possible that some part of the effects described could be temperature effects. Decomposition of nickel formate in oxygen [60] yielded NiO and C02 only the shapes of the a—time curves were comparable in some respects with those for reaction in vacuum and E = 160 15 kJ mole-1. Criado et al. [1031] used the Prout—Tompkins equation [eqn. (9)] in a non-isothermal kinetic analysis of nickel formate decomposition and obtained E = 100 4 kJ mole-1. [Pg.212]

S.3.3 Electrocatalytic Modified Electrodes Often the desired redox reaction at the bare electrode involves slow electron-transfer kinetics and therefore occurs at an appreciable rate only at potentials substantially higher than its thermodynamic redox potential. Such reactions can be catalyzed by attaching to the surface a suitable electron transfer mediator (45,46). Knowledge of homogeneous solution kinetics is often used to select the surface-bound catalyst. The function of the mediator is to facilitate the charge transfer between the analyte and the electrode. In most cases the mediated reaction sequence (e.g., for a reduction process) can be described by... [Pg.121]

Theories of Elementary Homogeneous Electron-Transfer Reactions Sacher, E. Laidler, K. J. 3... [Pg.622]

One also obtains analogous findings with trace-crossing effects for the electropolymerization of thiophene and pyrrole. This cannot be explained by a simple linear reaction sequence, as presented in Scheme I, because it indicates competing homogeneous and heterogeneous electron transfer processes. Measurements carried out in a diluted solution of JV-phenylcarbazole provide a more accurate insight into the reaction mechanism (Fig. 2). [Pg.10]

This chapter attempts to survey the studies which have been made on the various electron transfer reactions, occurring between metal ions (of the same element) in homogeneous solution. These reactions include the types known as exchange reactions... [Pg.56]

Electron transfer processes leading to a product adsorbed in the interfacial region o are of practical interest. These processes include the deposition of a metal such as Cu or Pd at ITIES, the preparation of colloidal metal particles with catalytic properties for homogeneous organic reactions, or electropolymerization. [Pg.620]

Electrochemical template-controlled sjmthesis of metallic nanoparticles consists of two steps (i) preparation of template and (ii) electrochemical reduction of metals. The template is prepared as a nano structured insulating mono-layer with homogeneously distributed planar molecules. This is a crucial step in the whole technology. The insulating monolayer has to possess perfect insulating properties while the template has to provide electron transfer between electrode and solution. Probably, the mixed nano-structured monolayer consisting of alkylthiol with cavities which are stabilized by the spreader-bar approach [19] is the only known system which meets these requirements. [Pg.321]

Free radicals generally undergo one-electron transfer processes in homogeneous solution. Two-electron transfer processes, in which two radicals participate, are often highly exoergic. Typical examples are... [Pg.117]

ZnO (suspension) sensitizes the photoreduction of Ag" by xanthene dyes such as uranin and rhodamine B. In this reaction, ZnO plays the role of a medium to facilitate the efficient electron transfer from excited dye molecules to Ag" adsortei on the surface. The electron is transferred into the conduction band of ZnO and from there it reacts with Ag. In homogeneous solution, the transfer of an electron from the excited dye has little driving force as the potential of the Ag /Ag system is —1.8 V (Sect. 2.3). It seems that sufficient binding energy of the silver atom formed is available in the reduction of adsorbed Ag" ions, i.e. the redox potential of the silver couple is more positive under these circumstances. [Pg.161]

The penultimate categorization of the chemical precipitation processes detailed in this chapter is reduction. The process basically involves electron transfer from different ions. The reductive precipitation may be either homogeneous (which may be ionic or non-ionic), or heterogeneous (which may be electrochemical or electrolytic). Electrolytic processes are described in Chapter 6, and no account of these need be given here. [Pg.541]

Attempts were made to quantitatively treat the elementary process in electrode reactions since the 1920s by J. A. V. Butler (the transfer of a metal ion from the solution into a metal lattice) and by J. Horiuti and M. Polanyi (the reduction of the oxonium ion with formation of a hydrogen atom adsorbed on the electrode). In its initial form, the theory of the elementary process of electron transfer was presented by R. Gurney, J. B. E. Randles, and H. Gerischer. Fundamental work on electron transfer in polar media, namely, in a homogeneous redox reaction as well as in the elementary step in the electrode reaction was made by R. A. Marcus (Nobel Prize for Chemistry, 1992), R. R. Dogonadze, and V. G. Levich. [Pg.278]


See other pages where Homogenous Electron Transfer is mentioned: [Pg.181]    [Pg.162]    [Pg.303]    [Pg.181]    [Pg.162]    [Pg.303]    [Pg.389]    [Pg.525]    [Pg.339]    [Pg.154]    [Pg.187]    [Pg.498]    [Pg.187]    [Pg.99]    [Pg.7]    [Pg.84]    [Pg.265]    [Pg.617]    [Pg.370]    [Pg.34]    [Pg.654]    [Pg.212]    [Pg.226]    [Pg.231]    [Pg.232]    [Pg.127]   
See also in sourсe #XX -- [ Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 ]




SEARCH



Electron homogeneous

Homogeneity electronic

© 2024 chempedia.info