Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron steric effects

In addition to this influence of the molecular structure, which correlates with the number and the delocalization of -electrons, steric effects resulting from the internal molecular geometry and the nature of the substituents may play an important role in intermolecular charge transfer because of the packing of adjacent molecules in the solid 80>. For instance, the observation that the introduction... [Pg.106]

Scheme 6.4 Electronic/steric effects of substituents in aromatic nitrene. Scheme 6.4 Electronic/steric effects of substituents in aromatic nitrene.
It is known [14] that geometrical parameters and entropy of compound are interconnected and, the inspector, entropy can influence antioxidative properties, through changes of a free energy of compoimd. Areas with the raised electronic density that conducts to the mutual pushing away of electrons (steric effect) occur a consequence of such change. [Pg.227]

The roles of phosphines are not clearly understood and are unpredictable. Therefore, in surveying optimum conditions of catalytic reactions, it is advisable to test the activity of all these important types of phosphines and phosphites. which have different steric effects and electron-donating properties. [Pg.4]

The equation does not take into account such pertubation factors as steric effects, solvent effects, and ion-pair formation. These factors, however, may be neglected when experiments are carried out in the same solvent at the same temperature and concentration for an homogeneous set of substrates. So, for a given ambident nucleophile the rate ratio kj/kj will depend on A and B, which vary with (a) the attacked electrophilic center, (b) the solvent, and (c) the counterpart cationic species of the anion. The important point in this kind of study is to change only one parameter at a time. This simple rule has not always been followed, and little systematic work has been done in this field (12) stiH widely open after the discovery of the role played by single electron transfer mechanism in ambident reactivity (1689). [Pg.6]

Auto-association of A-4-thiazoline-2-thione and 4-alkyl derivatives has been deduced from infrared spectra of diluted solutions in carbon tetrachloride (58. 77). Results are interpretated (77) in terms of an equilibrium between monomer and cyclic dimer. The association constants are strongly dependent on the electronic and steric effects of the alkyl substituents in the 4- and 5-positions, respectively. This behavior is well shown if one compares the results for the unsubstituted compound (K - 1200 M" ,). 4-methyl-A-4-thiazoline-2-thione K = 2200 M ). and 5-methyl-4-r-butyl-A-4-thiazoline-2-thione K=120 M ) (58). [Pg.384]

If the rate constants for quaternization of 2-alkylthiazoles depended on electronic factors, they would all be greater than that of thiazole, which has the low est pK. and all of the same order. The decrease in rate constants that is observed is attributed wholly to steric effects. In Table III-50 we report the main parameters for the reaction of 2-alkylthiazoles with methyl iodide. [Pg.387]

The greater stability of more highly substituted double bonds is an exam pie of an electronic effect The decreased stability that results from van der Waals strain between cis substituents is an example of a steric effect... [Pg.221]

Table 17 3 compares the equilibrium constants for hydration of some simple aldehydes and ketones The position of equilibrium depends on what groups are attached to C=0 and how they affect its steric and electronic environment Both effects con tribute but the electronic effect controls A hydr more than the steric effect... [Pg.713]

Electronic and steric effects operate m the same direction Both cause the equilib rium constants for hydration of aldehydes to be greater than those of ketones... [Pg.715]

Effects of Structure on Rate Electronic and steric effects influence the rate of hydra tion m the same way that they affect equilibrium Indeed the rate and equilibrium data of Table 17 3 parallel each other almost exactly... [Pg.715]

For most vinyl polymers, head-to-tail addition is the dominant mode of addition. Variations from this generalization become more common for polymerizations which are carried out at higher temperatures. Head-to-head addition is also somewhat more abundant in the case of halogenated monomers such as vinyl chloride. The preponderance of head-to-tail additions is understood to arise from a combination of resonance and steric effects. In many cases the ionic or free-radical reaction center occurs at the substituted carbon due to the possibility of resonance stabilization or electron delocalization through the substituent group. Head-to-tail attachment is also sterically favored, since the substituent groups on successive repeat units are separated by a methylene... [Pg.23]

The reactivity of the individual O—P insecticides is determined by the magnitude of the electrophilic character of the phosphoms atom, the strength of the bond P—X, and the steric effects of the substituents. The electrophilic nature of the central P atom is determined by the relative positions of the shared electron pairs, between atoms bonded to phosphoms, and is a function of the relative electronegativities of the two atoms in each bond (P, 2.1 O, 3.5 S, 2.5 N, 3.0 and C, 2.5). Therefore, it is clear that in phosphate esters (P=0) the phosphoms is much more electrophilic and these are more reactive than phosphorothioate esters (P=S). The latter generally are so stable as to be relatively unreactive with AChE. They owe their biological activity to m vivo oxidation by a microsomal oxidase, a reaction that takes place in insect gut and fat body tissues and in the mammalian Hver. A typical example is the oxidation of parathion (61) to paraoxon [311-45-5] (110). [Pg.289]

Methacryhc acid and its ester derivatives are Ctfjy -unsaturated carbonyl compounds and exhibit the reactivity typical of this class of compounds, ie, Michael and Michael-type conjugate addition reactions and a variety of cycloaddition and related reactions. Although less reactive than the corresponding acrylates as the result of the electron-donating effect and the steric hindrance of the a-methyl group, methacrylates readily undergo a wide variety of reactions and are valuable intermediates in many synthetic procedures. [Pg.246]

Tetrakisligand nickel(0) complexes have tetrahedral stmctures. Electronic stmctures have been studied and conformational analysis performed. Quantitative equiUbria measurements of the ligands in these complexes imply a dominant role for ligand steric effects when the complexes are employed as catalysts (94). [Pg.12]

The importance of steric effects in determining the oxidation state of the product can be illustrated by a thioether linkage, eg (57). If a methyl group is forced to be adjacent to the sulfur bond, the planarity required for efficient electron donation by unshared electrons is prevented and oxidation is not observed (48). Similar chemistry is observed in the addition of organic nitrogen and oxygen nucleophiles as well as inorganic anions. [Pg.410]

The importance of both electronic and steric effects is clear in cycloadditions as in cross-oxidations. One example is a heterocycHc modification leading to the thermodynamically less stable natural form of juglone derivatives such as ventiloquinones JT [124917-64-2] (84) and I [124917-65-3] (85) (83). The yields are 97% (84) from 6-chloro-2,3-dimethoxy-l,4-ben2oquinone [30839-34-0] and 100% (85) upon hydrolysis. [Pg.413]

AH ahphatic aldehydes and most ketones react to form cyanohydrins. The lower reactivity of ketones, relative to aldehydes, is attributed to a combination of electron-donating effects and increased steric hindrance of the second alkyl group in the ketones. The magnitude of the equiUbrium constants for the addition of hydrogen cyanide to a carbonyl group is a measure of the stabiUty of the cyanohydrin relative to the carbonyl compound plus hydrogen cyanide ... [Pg.412]

Hydrolysis reactions involving tetrahedral intermediates are subject to steric and electronic effects. Electron-withdrawing substituents faciUtate, but electron-donating and bulky substituents retard basic hydrolysis. Steric effects in acid-cataly2ed hydrolysis are similar to those in base-cataly2ed hydrolysis, but electronic effects are much less important in acid-cataly2ed reactions. Higher temperatures also accelerate the reaction. [Pg.388]

A mechanism has been proposed to rationalize the results shown in Figure 23. The relative proportion of the A -pyrazolines obtained by the reduction of pyrazolium salts depends on steric and electronic effects. When all the substituents are alkyl groups, the hydride ion attacks the less hindered carbon atom for example when = Bu only C-5 is attacked. The smaller deuterohydride ion is less sensitive to steric effects and consequently the reaction is less selective (73BSF288). Phenyl substituents, both on the nitrogen atom and on the carbon atoms, direct the hydride attack selectively to one carbon atom and the isolated A -pyrazoline has the C—C double bond conjugated with the phenyl (328 R or R = Ph). Open-chain compounds are always formed during the reduction of pyrazolium salts, becoming predominant in the reduction of amino substituted pyrazoliums. [Pg.243]

Alkyl groups under nonacidic conditions sterically deflect nucleophiles from C, but under acidic conditions this steric effect is to some extent offset by an electronic one the protonated oxirane opens by transition states (Scheme 40) which are even more 5Nl-like than the borderline Sn2 one of the unprotonated oxirane. Thus electronic factors favor cleavage at the more substituted carbon, which can better support a partial positive charge the steric factor is still operative, however, and even under acidic conditions the major product usually results from Cp attack. [Pg.108]

Ionization reaction rates are subject to both electronic and steric effects. The most important electronic effects are stabilization of the carbocation by electron-releasing... [Pg.265]

Substitution reactions by the ionization mechanism proceed very slowly on a-halo derivatives of ketones, aldehydes, acids, esters, nitriles, and related compounds. As discussed on p. 284, such substituents destabilize a carbocation intermediate. Substitution by the direct displacement mechanism, however, proceed especially readily in these systems. Table S.IS indicates some representative relative rate accelerations. Steric effects be responsible for part of the observed acceleration, since an sfp- caibon, such as in a carbonyl group, will provide less steric resistance to tiie incoming nucleophile than an alkyl group. The major effect is believed to be electronic. The adjacent n-LUMO of the carbonyl group can interact with the electnai density that is built up at the pentacoordinate carbon. This can be described in resonance terminology as a contribution flom an enolate-like stmeture to tiie transition state. In MO terminology,.the low-lying LUMO has a... [Pg.301]


See other pages where Electron steric effects is mentioned: [Pg.251]    [Pg.348]    [Pg.363]    [Pg.251]    [Pg.348]    [Pg.363]    [Pg.507]    [Pg.119]    [Pg.6]    [Pg.94]    [Pg.305]    [Pg.137]    [Pg.126]    [Pg.998]    [Pg.313]    [Pg.313]    [Pg.26]    [Pg.165]    [Pg.475]    [Pg.24]    [Pg.17]    [Pg.52]    [Pg.213]    [Pg.224]    [Pg.55]    [Pg.20]    [Pg.215]    [Pg.266]    [Pg.370]   
See also in sourсe #XX -- [ Pg.561 ]




SEARCH



Anomeric Control by Electronic and Steric Effects

Combining steric and electronic effects

Electron-directing and steric effects solvents

Electronic effects separated from steric

Electronic effects separation from steric

Electronic effects, steric

Electronic effects, steric control

Steric Effects Causing Decreased Electronic Interactions

Steric Effects Causing Increased or New Electronic Interactions

Steric Versus Electronic Effects

Steric and electronic effects

Steric effects stereoselective electron transfer

Sterically assisted electronic effect

Substituents effects, electronic steric

Valence electrons, primary steric effects

© 2024 chempedia.info