Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron spin resonance surface spectroscopy

As already mentioned, we chose three different physicochemical properties for studying the influence of the surface area and fractal dimension in the ability of dendritic macromolecules to interact with neighboring solvent molecules. These properties are (a) the differential chromatographic retention of the diastereoisom-ers of 5 (G = 1) and 6 (G = 1), (b) the dependence on the nature of solvents of the equilibrium constant between the two diastereoisomers of 5 (G = 1), and (c) the tumbling process occurring in solution of the two isomers of 5 (G = 1), as observed by electron spin resonance (ESR) spectroscopy. The most relevant results and conclusions obtained with these three different studies are summarized as follows. [Pg.47]

Several factors have contributed to this goal in the recent past development of electrochemical techniques for the study of complex reactions at solid electrodes, use of physical methods such as ESCA, Auger, LEED, etc. for the study of surfaces in the ultrahigh vacuum (UHV) environment and in situ techniques under the same conditions as the electrode reaction. Ellipsometry, electroreflectance, Mossbauer, enhanced Raman, infrared, electron spin resonance (ESR) spectroscopies and measurement of surface resistance and local changes of pH at surfaces were incorporated to the study of electrode kinetics. [Pg.66]

In the process of photocatalysis, the electrons and holes produced on photoirradiated Ti02 powders are trapped at the particle surface to form unpaired-electron species (step (4) in Fig.D.3). Photocatalytic reactions are actually the reactions of these radicals with reactant molecules at the Ti02 surface. Electron spin resonance (ESR) spectroscopy has been used for the detection of the photoproduced radicals on Ti02 at low temperatures such as 77 K. It has been reported that photoproduced electrons are trapped at various different sites titanium atoms on the surface or inside the particles, or oxygen molecules adsorbed on the surface. On the other hand, photoproduced holes are trapped at lattice OAygen atoms near the particle surface or at surface hydroxyl groups. We analyzed these radical species for several Ti02 photocatalysts that are commercially available, and found that the differences in the photoproduced radicals resulted from different heat-treatment conditions and the reactivity with several molecules.17)... [Pg.46]

These speciation concepts are illustrated in Fig. 3 for the idealized basal-plane surface of a smectite, such as montmorillonite. Also shown are the characteristic residence-time scales for a water molecule diffusing in the bulk liquid (L) for an ion in the diffuse swarm (DI) for an outer-sphere surface complex (OSQ and for an inner-sphere surface complex (ISC). These time scales, ranging from picosecond to nanosecond [20,21], can be compared with the molecular time scales that are probed by conventional optical, magnetic resonance, and neutron scattering spectroscopies (Fig. 3). For example, all three surface species remain immobile while being probed by optical spectroscopy, whereas only the surface complexes may remain immobile while being probed by electron spin resonance (ESR) spectroscopy [21-23]. [Pg.216]

Scientists have used a wide arsenal of analytical techniques to monitor chemical and physical transformations of polymers following exposure to laser radiation, among which UV-Vis absorption, nuclear magnetic resonance (NMR) spectroscopy, electron spin resonance (ESR) spectroscopy for detection of free radicals, GC/MS analysis, FTIR for detection of various functional groups and bonds, X-ray photoelectron spectroscopy (XPS) for the chemical composition of surfaces, optical, and fluorescence microscopy, atomic force microscopy (AFM) for surface topography, quartz crystal microbalance (QCM) for in situ mass loss measurements, and so forth. [Pg.501]

One of the first applications of electron spin resonance (ESR) spectroscopy to catalysis was in a study of the chromia-alumina system, and during the last five years or so a number of publications have appeared dealing with this subject. The ESR spectra of supported chromia catalysts have been interpreted in terms of various chromium ion configurations or phases, each of which wiU be discussed below. It will be seen that these data substantiate many of the conclusions drawn from the magnetic susceptibility data described above, and, in addition, they provide a deeper insight into the molecular structure of chromia-alumina catalysts than can be obtained from static susceptibility measurements alone. This body of research serves as a very good illustration of the potential usefulness of ESR spectroscopy to the catalytic chemist, particularly when one considers that all of the data to be discussed below were obtained on poorly crystallized, high surface area powders, typical of practical catalysts. [Pg.262]

Within the last two decades Electron Spin Resonance-(ESR) spectroscopy has become a standard experimental technique in electrochemical research. The main interest was in the field of electrochemical generation of radicals to characterize their structure by ESR spectroscopy or to prove their presence in electrode reactions. The studies have been extended to the kinetics of radical reactions and the set up of reaction mechanism, to the solvation phenomena in radical electron densities and to radical conformation and ion complex structure. The latest development is the study of the electrode materials and their surface layers in electrochemical systems by simultaneous ESR spectroscopic and electrochemical measurements, e.g., of polymer modified electrodes. [Pg.59]

Several different experimental techniques, such as fluorescence decay, electron spin resonance (ESR) spectroscopy, Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, neutron reflectome-try, calorimetry, Fourier-transform infrared (FT-IR) adsorption spectroscopy, small-angle neutron scattering (SANS), ellipsometry and surface force measurements, have been used to study self-assembled surfactant structures at the solid-liquid interface (11). These measurements, although providing insight into the hemimicellization process, critical aggregation numbers... [Pg.237]

Iron-containing mesoporous materials have been widely studied due to the unique catalytic performance of selective reduction, hydrocarbon oxidation, and acylation and alkylation reactions (Vinu et al. 2007). Thus, Tanglumlert et al. (2008) were interested in the room temperature synthesis of Fe-SBA-1 using FeCl3 via the sol-gel process. The results illustrated that up to 6 wt% Fe could be contained in the SBA-1 framework without destroying the mesopore order. Nevertheless, extraframework FeOg clusters were also found, as suggested by electron spin resonance (ESR) spectroscopy. The BET surface area was 1062 m /g, with a pore diameter around 2.1 nm. [Pg.327]

Electron spin resonance (ESR) spectroscopy is not applied as a surface-sensitive method. Based on its sensitivity, however, it is possible to detect covalently bound molecules at the polymer surface if these molecules are labeled with a spin marker such as 4-amino-TEMPO. The application of atomic force microscopy (AFM) in comparison to scanning electron microscopy (SEM) delivers information about surface properties as far as molecular dimensions. Another advantage of AFM compared with SEM is that the sample is investigated in the original state (no sputtering) [73]. The full characterization of the surface of a... [Pg.14]

The polymer concentration profile has been measured by small-angle neutron scattering from polymers adsorbed onto colloidal particles [70,71] or porous media [72] and from flat surfaces with neutron reflectivity [73] and optical reflectometry [74]. The fraction of segments bound to the solid surface is nicely revealed in NMR studies [75], infrared spectroscopy [76], and electron spin resonance [77]. An example of the concentration profile obtained by inverting neutron scattering measurements appears in Fig. XI-7, showing a typical surface volume fraction of 0.25 and layer thickness of 10-15 nm. The profile decays rapidly and monotonically but does not exhibit power-law scaling [70]. [Pg.402]

The title Spectroscopy in Catalysis is attractively compact but not quite precise. The book also introduces microscopy, diffraction and temperature programmed reaction methods, as these are important tools in the characterization of catalysts. As to applications, I have limited myself to supported metals, oxides, sulfides and metal single crystals. Zeolites, as well as techniques such as nuclear magnetic resonance and electron spin resonance have been left out, mainly because the author has little personal experience with these subjects. Catalysis in the year 2000 would not be what it is without surface science. Hence, techniques that are applicable to study the surfaces of single crystals or metal foils used to model catalytic surfaces, have been included. [Pg.10]

It is interesting to note that the catalysts that show good selectivities at the higher temperatures generally do not contain easily reducible metal ions, such as V, Mo, or Sb. Many of the catalysts for the lower-temperatures operation, on the other hand, contain these reducible cations. In a study using a Li-Mg oxide, it was established that gas-phase ethyl radicals could be generated by reaction of ethane with the surface at about 600°C (17). These radicals could be trapped by matrix isolation and identified by electron spin resonance spectroscopy. [Pg.6]

Analytical techniques are conveniently discussed in terms of the excitation-system-response parlance described earlier. In most cases the system is some molecular entity in a specific chemical environment in some physical container (the cell). The cell is always an important consideration however, its role is normally quite passive (e.g., in absorption spectroscopy, fluorescence, nuclear magnetic resonance, electron spin resonance) because the phenomena of interest are homogeneous throughout the medium. Edge or surface effects are most often negligible. On the other hand, interactions between phases are the central issue in chromatography and electrochemistry. In such heterogeneous techniques, the physical characteristics of the sample container become of critical... [Pg.165]

Cheshire, M. V., and N. Senesi (1998). Electron spin resonance spectroscopy of organic and mineral soil particles. In Structure and Surface Reactions of Soil Particles, Huang, P. M., Senesi, N., and Buffle, J., eds., IUPAC Book Series on Analytical and Physical Chemistry of Environmental Systems, John Wiley Sons, New York, pp. 325-373. [Pg.175]


See other pages where Electron spin resonance surface spectroscopy is mentioned: [Pg.863]    [Pg.131]    [Pg.574]    [Pg.225]    [Pg.355]    [Pg.9]    [Pg.60]    [Pg.278]    [Pg.353]    [Pg.427]    [Pg.422]    [Pg.116]    [Pg.34]    [Pg.355]    [Pg.915]    [Pg.519]    [Pg.549]    [Pg.176]    [Pg.6]    [Pg.448]    [Pg.410]    [Pg.266]    [Pg.115]    [Pg.225]    [Pg.74]    [Pg.232]    [Pg.31]    [Pg.82]    [Pg.279]    [Pg.549]    [Pg.1019]    [Pg.264]    [Pg.336]    [Pg.72]    [Pg.153]   
See also in sourсe #XX -- [ Pg.225 ]




SEARCH



Electron spin spectroscopy

Electronic spectroscopy, surface

Electrons resonance spectroscopy

SPECTROSCOPY SPINNING

Spectroscopy electron spin resonance

Surface electronic

Surface electrons

Surface resonances

Surface spectroscopy

© 2024 chempedia.info