Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron quantitative measure

The PEOE method leads to only partial equalization of orbital electronegativities. Thus, each atom of a molecule retains, on the basis of Eq. (12), a residual electronegativity that measures its potential to attract further electrons. It has been shown that the values of residual electronegativities can be taken as a quantitative measure of the inductive effect [35]. [Pg.332]

Because X-ray counting rates are relatively low, it typically requires 100 seconds or more to accumulate adequate counting statistics for a quantitative analysis. As a result, the usual strategy in applying electron probe microanalysis is to make quantitative measurements at a limited collection of points. Specific analysis locations are selected with the aid of a rapid imaging technique, such as an SEM image prepared with backscattered electrons, which are sensitive to compositional variations, or with the associated optical microscope. [Pg.187]

The Hammett equation and LFER in general added no new concepts to the qualitative picture that had been built up of electronic effects in organic reactions, but they did provide a quantitative measure that had been lacking and that has been found very useful. Here we will describe the further development of ideas concerning the substituent constant. [Pg.324]

The usefulness of Table 12-1 is clear. Qualitative predictions of reactions can be made with the aid of the ordered list of half-reactions. Think how the value of the list would be magnified if we had a quantitative measure of electron losing tendencies. The voltages of electrochemical cells furnish such a quantitative measure. [Pg.207]

Chemists have determined a large number of these half-cell potentials. The magnitude of the voltage is a quantitative measure of the tendency of that half-reaction to release electrons in comparison to the H2-2H+ half-reaction. If the sign is positive, the half-reaction has greater tendency to release electrons than does the H2-2H+ half-... [Pg.210]

The standard electrode potential is a quantitative measure of the readiness of the element to lose electrons. It is therefore a measure of the strength of the element as a reducing agent in aqueous solution the more negative the potential of the element, the more powerful is its action as a reductant. [Pg.63]

X-Ray and electron diffraction measurements have been most usually used to characterize the phases present in any reactant mixture, and provide a means of identification of solid reactants, intermediates and products. In addition to such qualitative analyses, the method can also be used quantitatively, with suitable systems, to determine the amounts of particular solids present [111], changes in lattice parameters during reaction, topotactical relationships between reactants and products, the presence of finely divided or strained material, crystallographic transformations, etc. [Pg.27]

However, in more recent years it has become usual to employ ar or crR-type constants, either together in the dual substituent-parameter equation or individually in special linear regression equations which hold for particular infrared magnitudes. In this connection a long series of papers by Katritzky, Topsom and their colleagues on Infrared intensities as a quantitative measure of intramolecular interactions is of particular importance. We will sample this series of papers, insofar as they help to elucidate the electronic effects of sulfinyl and sulfonyl groups. [Pg.515]

In discussing the elFect of structure on the stabilization of alkyl cations on the basis of the carbonylation-decarbonylation equilibrium constants, it is assumed that—to a first approximation—the stabilization of the alkyloxocarbonium ions does not depend on the structure of the alkyl group. The stabilization of the positive charge in the alkyloxocarbonium ion is mainly due to the resonance RC = 0 <-> RC = 0+, and the elFect of R on this stabilization is only of minor importance. It has been shown by Brouwer (1968a) that even in the case of (tertiary) alkylcarbonium ions, which would be much more sensitive to variation of R attached to the electron-deficient centre, the stabilization is practically independent of the structure of the alkyl groups. Another argument is found in the fact that the equilibrium concentrations of isomeric alkyloxocarbonium ions differ by at most a factor of 2-3 from each other (Section III). Therefore, the value of K provides a quantitative measure of the stabilization of an alkyl cation. In the case of R = t-adamantyl this equilibrium constant is 30 times larger than when R = t-butyl or t-pentyl, which means that the non-planar t-adamantyl ion is RT In 30= 2-1 kcal... [Pg.33]

The first-principles calculation of NIS spectra has several important aspects. First of all, they greatly assist the assignment of NIS spectra. Secondly, the elucidation of the vibrational frequencies and normal mode compositions by means of quantum chemical calculations allows for the interpretation of the observed NIS patterns in terms of geometric and electronic structure and consequently provide a means of critically testing proposals for species of unknown structure. The first-principles calculation also provides an unambiguous way to perform consistent quantitative parameterization of experimental NIS data. Finally, there is another methodological aspect concerning the accuracy of the quantum chemically calculated force fields. Such calculations typically use only the experimental frequencies as reference values. However, apart from the frequencies, NIS probes the shapes of the normal modes for which the iron composition factors are a direct quantitative measure. Thus, by comparison with experimental data, one can assess the quality of the calculated normal mode compositions. [Pg.187]

One of the early questions raised on TUD-1 dealt with its pore structure did it have intersecting or nonintersecting pores At the University of Utrecht, one conclusive characterization was carried out with a silica TUD-1 with Pt inserted, which was analyzed by 3-D TEM (transmission electron microscopy) (9). The Pt anchors (not shown) were used as a focal point for maintaining the xyz orientation. As shown in Figure 41.2, the TUD-1 is clearly amorphous. While not quantitatively measured for this sample, the pores appear rather uniform, consistent with all porosimetry measurements on TUD-1 showing narrow pore size distributions. [Pg.368]

There is now available a substantial amount of information on the principles and techniques involved in preparing evaporated alloy films suitable for adsorption or catalytic work, although some preparative methods, e.g., vapor quenching, used in other research fields have not yet been adopted. Alloy films have been characterized with respect to bulk properties, e.g., uniformity of composition, phase separation, crystallite orientation, and surface areas have been measured. Direct quantitative measurements of surface composition have not been made on alloy films prepared for catalytic studies, but techniques, e.g., Auger electron spectroscopy, are available. [Pg.184]

FRET efficiency can be quantitatively measured over D-A separations of 0.5-10 nm. For shorter distances the assumption of point dipoles may not be valid (although this does not seem to be noticeable until very short distances). Very short distances comparable to the spatial extension of electron orbitals can lead to energy transfer by electron transfer (Section 1.11). [Pg.36]

The authors believe that electron exchange occurs at every intramolecular collision . Thus, their work should provide the first quantitative measurements of the frequency of intramolecular collision between end-groups attached to flexible chains. According to these authors such frequency reflects an intrinsic property of chain molecules, referred to as the dynamic flexibility, which is a measure of the rate of conformational change. It should be distinguished from the static flexibility, which depends on the multitude of... [Pg.58]

Furthermore, under controlled bombardment conditions, peak intensity measurements may be used for a quantitative determination of the appropriate element. Measurements of the characteristics and intensity of primary X-rays produced by electron bombardment constitute the basis of electron probe microanalysis. Figure 8.33 illustrates the complex nature of the reactions initiated by the impact of an electron beam on a target. As a consequence of this complexity it has proved extraordinarily difficult to make fully quantitative measurements, and it is only recently with the widespread application of dedicated computers and sophisticated software that this has become possible. [Pg.337]

The OUR is an activity-related quantitative measure of the aerobic biomass influence on the relationship between the electron donor (organic substrate) and the electron acceptor (dissolved oxygen, DO). It is a measure of the flow of electrons through the entire process system under aerobic conditions (Figure 2.2). The OUR versus time relationship of wastewater samples from sewers becomes a backbone for analysis of the microbial system. This relationship is crucial for characterization of the suspended wastewater phase in terms of COD components and corresponding kinetic and stoichiometric parameters of in-sewer processes. [Pg.175]


See other pages where Electron quantitative measure is mentioned: [Pg.307]    [Pg.1120]    [Pg.1324]    [Pg.1842]    [Pg.136]    [Pg.290]    [Pg.124]    [Pg.127]    [Pg.30]    [Pg.590]    [Pg.315]    [Pg.324]    [Pg.341]    [Pg.202]    [Pg.211]    [Pg.11]    [Pg.4]    [Pg.183]    [Pg.211]    [Pg.48]    [Pg.369]    [Pg.46]    [Pg.43]    [Pg.277]    [Pg.159]    [Pg.52]    [Pg.298]    [Pg.48]    [Pg.226]    [Pg.321]    [Pg.495]    [Pg.259]    [Pg.850]    [Pg.71]   
See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Electron measured

Electron measurement

Electronic measurements

Quantitation measurements

Quantitative measure

Quantitative measurements

© 2024 chempedia.info