Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron-poor alkenes reactions with

Iodine was found to be an efficient catalyst for the aziridination of alkenes (Scheme 6) utilizing chloramine-T (A-chloro-A-sodio-p-toluenesulfonamide) as the nitrogen source. For example, when 2 equiv. of styrene (45a) were added to chloramine-T in the presence of a catalytic amount of iodine (10mol%) in a 1 1 solvent mixture of acetonitrile and neutral buffer, the corresponding aziridine (46) was obtained in 91% yield. The reaction proved to work with other acyclic and cyclic alkenes, such as oct-l-ene and cyclohexene. The aziridination of para-substituted styrene derivatives (45b-e) demonstrated that, as expected for an electrophilic addition, electron-rich alkenes reacted faster than electron-poor alkenes. However, with 1 equiv. of I2, mainly iodohydrin (47) was formed. A catalytic cycle has been proposed to account for the fact that only a catalytic amount of iodine is required (Scheme 1) ... [Pg.427]

Radicals are often classified according to their rates of reactions with alkenes. Those radicals that react more rapidly with electron poor alkenes than with electron rich are termed nucleophilic radicals. Conversely, those that react more rapidly with electron rich alkenes than electron poor are termed electrophilic radicals. Recently, it has been found that this simple division does not suffice because certain radicals react more rapidly with both electron rich and electron poor alkenes than they do with alkenes of intermediate electron density. These radicals are termed ambiphilic. The appropriate pairing of a radical and an acceptor is important for the success of an addition reaction. [Pg.727]

The components were chosen based on the fact that (i) nitronates react faster with electron-poor alkene than with electron-rich alkenes and (ii) methyl acrylate reacts as an electron-poor dipolarophile because it does not react with the enol ether under high pressure conditions. The reaction of 81a, 82 and 89 afforded a 2.5 1 mixture of two main products, 90 and 91, in 62% yield (Scheme 7.22). [Pg.250]

The solid phase synthesis of nitroso acetals via a resin-bound dipolarophile will be described first. It has already been mentioned that nitronates react much faster with electron-poor alkenes than with electron-rich alkenes. The reaction of the nitronate formed in situ with the resin-bound acrylate is therefore expected to be faster than its reaction with the enol ether in solution. An acrylate was selected as dipolarophile and coupled to the resin via an ester linkage, which allows the facile cleavage of the resin-bound nitroso acetals by several methods (hydrolysis, reduc-... [Pg.299]

The stabilization of chloromethoxycarbene (234) was intensively studied. It is formed from diazirine (233) in a first order reaction with fi/2 = 34h at 20 C. It reacts either as a nucleophile, adding to electron poor alkenes like acrylonitrile with cyclopropanation, or as an electrophile, giving diphenylcyclopropenone with the electron rich diphenylacetylene. In the absence of reaction partners (234) decomposes to carbon monoxide and methyl chloride (78TL1931, 1935). [Pg.225]

One of the earliest reported thermal reactions of Fischer carbene complexes was the reaction with olefins to give cyclopropanes [127]. More recently it has been shown that photolysis accelerates inter molecular cydopropanation of electron-poor alkenes [128]. Photolysis of Group 6 imine carbenes with alkenes... [Pg.192]

The (TMS)3SiH mediated addition of phosphorus-centered radicals to a number of alkenes has been investigated in some detail. Reaction (73) is an example of phosphorous-carbon bond formation using four structurally different phenylseleno derivatives with 3 equiv of (TMSlsSiH and AIBN in refluxing benzene for 2h. Comparative studies on the reaction of the four phosphorus-centered radicals have been obtained. Although the reaction with 1-methylene cyclohexane is efficient with all four derivatives, different selectivity is observed with electron-rich or electron-poor alkenes. [Pg.153]

The rate of epoxidation of alkenes is increased by alkyl groups and other ERG substituents and the reactivity of the peroxy acids is increased by EWG substituents.72 These structure-reactivity relationships demonstrate that the peroxyacid acts as an electrophile in the reaction. Decreased reactivity is exhibited by double bonds that are conjugated with strongly electron-attracting substituents, and more reactive peroxyacids, such as trifluoroperoxyacetic acid, are required for oxidation of such compounds.73 Electron-poor alkenes can also be epoxidized by alkaline solutions of... [Pg.1091]

Amouri and coworkers also demonstrated that the nucleophilic reactivity of the exocyclic carbon of Cp Ir(T 4-QM) complex 24 could be utilized to form carbon -carbon bonds with electron-poor alkenes and alkynes serving as electrophiles or cycloaddition partners (Scheme 3.17).29 For example, when complex 24 was treated with the electron-poor methyl propynoate, a new o-quinone methide complex 28 was formed. The authors suggest that the reaction could be initiated by nucleophilic attack of the terminal carbon of the exocyclic methylene group on the terminal carbon of the alkyne, generating a zwitterionic oxo-dienyl intermediate, followed by proton transfer... [Pg.78]

Diazomethane is also decomposed by N O)40 -43 and Pd(0) complexes43 . Electron-poor alkenes such as methyl acrylate are cyclopropanated efficiently with Ni(0) catalysts, whereas with Pd(0) yields were much lower (Scheme 1)43). Cyclopropanes derived from styrene, cyclohexene or 1-hexene were formed only in trace yields. In the uncatalyzed reaction between diazomethane and methyl acrylate, methyl 2-pyrazoline-3-carboxylate and methyl crotonate are formed competitively, but the yield of the latter can be largely reduced by adding an appropriate amount of catalyst. It has been verified that cyclopropane formation does not result from metal-catalyzed ring contraction of the 2-pyrazoline, Instead, a nickel(0)-carbene complex is assumed to be involved in the direct cyclopropanation of the olefin. The preference of such an intermediate for an electron-poor alkene is in agreement with the view that nickel carbenoids are nucleophilic 44). [Pg.85]

Based on a detailed investigation, it was concluded that the exceptional ability of the molybdenum compounds to promote cyclopropanation of electron-poor alkenes is not caused by intermediate nucleophilic metal carbenes, as one might assume at first glance. Rather, they seem to interfere with the reaction sequence of the uncatalyzed formation of 2-pyrazolines (Scheme 18) by preventing the 1-pyrazoline - 2-pyrazoline tautomerization from occurring. Thereby, the 1-pyrazoline has the opportunity to decompose purely thermally to cyclopropanes and formal vinylic C—H insertion products. This assumption is supported by the following facts a) Neither Mo(CO)6 nor Mo2(OAc)4 influence the rate of [3 + 2] cycloaddition of the diazocarbonyl compound to the alkene. b) Decomposition of ethyl diazoacetate is only weakly accelerated by the molybdenum compounds, c) The latter do not affect the decomposition rate of and product distribution from independently synthesized, representative 1-pyrazolines, and 2-pyrazolines are not at all decomposed in their presence at the given reaction temperature. [Pg.128]

Some remarks concerning the scope of the cobalt chelate catalysts 207 seem appropriate. Terminal double bonds in conjugation with vinyl, aryl and alkoxy-carbonyl groups are cyclopropanated selectively. No such reaction occurs with alkyl-substituted and cyclic olefins, cyclic and sterically hindered acyclic 1,3-dienes, vinyl ethers, allenes and phenylacetylene95). The cyclopropanation of electron-poor alkenes such as acrylonitrile and ethyl acrylate (optical yield in the presence of 207a r 33%) with ethyl diazoacetate deserve notice, as these components usually... [Pg.165]

When other acceptor systems such as tetracyanoethylene, ethyl propiolate, dibenzoylacetylene, or dimethyl azodicarboxylate were reacted with 41, no additional products were formed. Accordingly, the scope of the reaction for the nucleophilic addition of 41 to electron-poor alkenes, alkynes, and diazo compounds is quite narrow. [Pg.357]

A majority of radical addition occurs with electron-poor alkenes using alkyl halides in the presence of BusSnH. These reactions are feasible due to a proper matching between the radical acceptor and the donor. However, when the alkene is electron-rich and since simple alkyl radicals are considered as nucleophilic, the reaction is not a practical method for carbon-carbon bond formation. By applying the concept of polarity-reversal catalysis, an additional reagent is introduced which alleviates the mismatch between the partners and makes the reaction feasible. A few examples illustrating this concept have been described in this review. [Pg.135]

Electron-rich 3-methoxy-4-trimethylsilyl-l,2-butadiene (22) reacted with several electron-poor alkenes in the presence of diethylaluminum chloride to afford methylene cyclobutanes 23. Reactions with alkynes were performed in the presence of methylalu-minum bis(2,4,6-tri-t-butylphenoxide) (equation 7)16. [Pg.333]

Cycloaddition reactions of indolizines such as 547 can generally be performed with moderately electron-poor alkenes only, because alkenes with strong acceptor substituents predominantly give Michael adducts. The cycloaddition of 2-methylindolizine... [Pg.452]

Also known as Morita-Baylis-Hillman reaction, and occasionally known as Rauhut-Currier reaction. It is a carbon—carbon bond-forming transformation of an electron-poor alkene with a carbon electrophile. Electron-poor alkenes include acrylic esters, acrylonitriles, vinyl ketones, vinyl sulfones, and acroleins. On the other hand, carbon electrophiles may be aldehydes, a-alkoxycarbonyl ketones, aldimines, and Michael acceptors. [Pg.39]

Numerous examples involving the preparation of tetrahydrothiophenes via [3 + 2] cycloaddition of thiocarbonyl ylides with electron-poor alkenes have been reported. Thiobenzophenone (5)-methylide (16), generated from 2,5-dihydro-1,3,4-thiadiazole (15) and analogous compounds, react with maleic anhydride, N-substituted maleic imide, maleates, fumarates, and fumaronitrile at —45°C (28,91,93,98,128,129). Similar reactions with adamantanethione (5)-methylide (52) and 2,2,4,4-tetramethyl-3-thioxocyclobutanone (5)-methylide (69) occur at ca. +45°C and, generally, the products of type 70 were obtained in high yield (36,94,97,130) (Scheme 5.25). Reaction with ( )- and (Z)-configured dipolaro-philes stereospecifically afford trans and cis configured adducts. [Pg.331]

The use of lithium amides to metalate the a-position of the N-substituent of imines generates 2-azaallyl anions, typically stabilized by two or three aryl groups (Scheme 11.2) (48-62), a process pioneered by Kauffmann in 1970 (49). Although these reactive anionic species may be regarded as N-lithiated azomethine ylides if the lithium metal is covalently bonded to the imine nitrogen, they have consistently been discussed as 2-azaallyl anions. Their cyclization reactions are characterized by their enhanced reactivity toward relatively unactivated alkenes such as ethene, styrenes, stilbenes, acenaphtylene, 1,3-butadienes, diphenylacetylene, and related derivatives. Accordingly, these cycloaddition reactions are called anionic [3+2] cycloadditions. Reactions with the electron-poor alkenes are rare (54,57). Such reactivity makes a striking contrast with that of N-metalated azomethine ylides, which will be discussed below (Section 11.1.4). [Pg.759]

The most reactive Michael acceptors, such as alkylidene malonates, gem-dicyanoalkenes and nitroalkenes, react with a-halozinc esters in a conjugate fashion. Beautiful examples were offered by two stereocontrolled conjugate additions to piperidinone 102 and pyrro-lidinone 104 leading to optically active bicyclic lactams 103147 (equation 60) and 105 (equation 61)148. With these electron-poor alkenes a Grignard two-step protocol is to be adopted in order to avoid the single electron transfer reactions from the metal to the Michael acceptor, which should afford olefin dimers. The best solvent is found to be a... [Pg.829]

In the case of the electron poor alkenes, results were more varied. Under all conditions examined, reactions with methyl vinyl ketone, acrylonitrile, methacrylonitrile and 4-vinyl pyridine afforded products with IR spectra equivalent to those obtained without the addition of the alkene (side reaction). In the cases of vinyl bromide and chloromethyl styrene, unreacted PCTFE was recovered unchanged. It is speculated that electron transfer to the alkene proceeded in each case. While the product of vinyl bromide reduction was not observed, perhaps because of volatility, one could isolate poly(chloromethylstyrene) in the latter case. [Pg.142]

The formation of [2+2] cycloadducts has been observed to occur upon irradiation of t-1 with a number of electron-poor alkenes. The reaction of It with dimethyl fumarate has been investigated in the greatest detail. Irradiation of dilute solutions of t-1 and dimethyl fumarate in nonpolar solvent results in the formation of t-1 and dimethyl y-truxinate, 34 (76). At high... [Pg.188]

Cycloadduct formation is not observed upon irradiation of t-1 with fumaronitrile, maleic anhydride, or tetracyanoethylene. Irradiation of t-1 and maleic anhydride results in the formation of an alternating copolymer (96). The radical-ion pair or free radical ions obtained upon irradiation of the charge-transfer complex in polar solvent are presumed to be the initiating species. Irradiation of the ground state complex of t-1 and tetracyanoethylene at 580 nm in solution or the solid state results in neither adduct formation or t-1 isomerization (76). Irradiation of t-1 at 313 nm in the presence of tetracyanoethylene results in rapid isomerization followed by slow but quantitative formation of phenanthrene and tetracyanoethane (97). Product formation is proposed to occur via a dark reaction of dihydrophenanthrene with the electron-poor alkene. [Pg.191]

The observation of triplet sensitized cycloaddition reactions of 10 but not t-1 with vinyl ethers reflects the requirement of a planar stilbene excited state for effective interaction with ground state electron-rich or electron-poor alkenes. While triplet sensitized reactions of other cyclic stilbene analogues (e.g., 5-9) have not been reported, it appears quite likely that they should occur. [Pg.197]

The formation of 59 and related adducts in the reactions of t-1 and several of its ring-substituted derivatives with 1,4-cy-clohexadienes (110) provides the only example of acyclic adduct formation between a stilbene and electron-rich or electron-poor alkenes (see, however, Section VI). Kaupp has proposed that... [Pg.201]

The results described in this article establish that the stilbenes are among the most versatile of organic reactants in bimolecular photochemical reactions. Only triplet cyclo-alkenones can rival the ability of It to dimerize, form [2+2] adducts with both electron-rich and electron-poor alkenes, and form acyclic adducts with amines, heterocycles, and noncon-jugated dienes. All of the known bimolecular photochemical reactions of excited stilbenes involve It as the reactive excited state. The failure of - -c, and 3C to undergo bi-... [Pg.223]


See other pages where Electron-poor alkenes reactions with is mentioned: [Pg.25]    [Pg.59]    [Pg.78]    [Pg.194]    [Pg.165]    [Pg.389]    [Pg.333]    [Pg.140]    [Pg.40]    [Pg.767]    [Pg.28]    [Pg.106]    [Pg.286]    [Pg.398]    [Pg.115]    [Pg.398]    [Pg.165]    [Pg.181]    [Pg.195]   
See also in sourсe #XX -- [ Pg.181 , Pg.192 ]




SEARCH



Electron alkene

Electron-poor

Poore

Reaction with alkenes

Reactions with electrons

© 2024 chempedia.info