Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron paramagnetic resonance radical detection

We said earlier that we can never prove a mechanism—only disprove it. Unfortunately, just as the correct mechanism seems to be found, there are some observations that make us doubt this mechanism. In Chapter 37 you saw how a technique called electron spin resonance (ESR) (or electron paramagnetic resonance, EPR) detects radicals and gives some information about their structure. When the Cannizzaro reaction was carried out with benzaldehyde and a number of substituted benzaldehydes in an ESR spectrometer, a radical was detected. For each aldehyde used, the ESR spectrum proved to be identical to that formed when the aldehyde was reduced using sodium metal. The radical formed was the radical anion of the aldehyde. [Pg.1034]

Electron paramagnetic resonance spectroscopy (HER), also called electron spin resonance spectroscopy (ESR), may be used for direct detection and conformational and structural characterization of paramagnetic species. Good introductions to F.PR have been provided by Fischer8 and I.effler9 and most books on radical chemistry have a section on EPR. EPR detection limits arc dependent on radical structure and the signal complexity. However, with modern instrumentation, radical concentrations > 1 O 9 M can be detected and concentrations > I0"7 M can be reliably quantified. [Pg.15]

Up to date, several experimental techniques have been developed which are capable of detecting some of these particles under ordinary thermodynamic conditions. One can use these methods to keep track of transformations of the particles. For instance, it is relevant to mention here the method of electron paramagnetic resonance (EPR) with sensitivity of about 10 particles per cm [IJ. However, the above sensitivity is not sufficient to study physical and chemical processes developing in gaseous and liquid media (especially at the interface with solids). Moreover, this approach is not suitable if one is faced with detection of particles possessing the highest chemical activity, namely, free radicals and atoms. As for the detection of excited molecular or atom particles... [Pg.170]

Electron paramagnetic resonance (epr) spectroscopic methods are used for the detection and identification of species that have a nett electronic spin radicals, radical ions, etc. It is extremely sensitive, capable of detecting species down to concentration levels of 1 x 10 12 moles dm "3, and produces spectra that are distinctive and generally easily interpreted. Consequently, the technique has found extensive application in electrochemistry since the late 1950s. In order to understand epr, it may be helpful to review some fundamental concepts. [Pg.189]

Electron paramagnetic resonance (EPR) and NMR spectroscopy are quite similar in their basic principles and in experimental techniques. They detect different phenomena and thus yield different information. The major use of EPR spectroscopy is in the detection of free radicals which are uniquely characterised by their magnetic moment that arises from the presence of an unpaired electron. Measurement of a magnetic property of a material containing free radicals, like its magnetic susceptibility, provides the concentration of free radicals, but it lacks sensitivity and cannot reveal the structure of the radicals. Electron paramagnetic resonance spectroscopy is essentially free from these defects. [Pg.84]

One of the earliest reports of LO inhibition concerned the effects of ortho-dihydroxybenzene (catechol) derivatives on soybean 15-LO [58]. Lipophilic catechols, notably nordihydroguaiaretic acid (NDGA) (19), were more potent (10 /zM) than pyrocatechol itself. The inactivation was, under some conditions, irreversible, and was accompanied by oxidation of the phenolic compound. The orfAo-dihydroxyphenyl moiety was required for the best potency, and potency also correlated with overall lipophilicity of the inhibitor [61]. NDGA and other phenolic compounds have been shown by electron paramagnetic resonance spectroscopy to reduce the active-site iron from Fe(III) to Fe(II) [62] one-electron oxidation of the phenols occurs to yield detectable free radicals [63]. Electron-poor, less easily oxidized catechols form stable complexes with the active-site iron atom [64]. [Pg.8]

A number of papers have reported studies on pyrimidine radical cations. 1-Methylthymine radical cations generated via a triplet-sensitized electron transfer to anthraquinone-2,6-disulfonic acid were detected by Fourier transform electron paramagnetic resonance (FTEPR). The parent 1-methylthymine radical cation, and its transformation to the N(3)-deprotonated radical cation, were observed. Radical cations formed by addition of HO and POs" at C(6) were also detected depending on the pH. Similarly, pyrimidine radical cations deprotonated at N(l) and C(5)-OH were detected from the reaction of 804 with various methylated pyrimidines." These radicals are derived from the initial SO4 adducts of the pyrimidines. Radical cations of methylated uracils and thymines, generated by electron transfer to parent ions of... [Pg.178]

Tn 1963 we began to investigate lignin preparations by electron paramagnetic resonance (EPR) spectrometry. This technique can detect paramagnetic species, particularly organic free radicals. The types of information available from EPR measurements can be summarized as follows ... [Pg.64]

Kochany and Bolton (1992) studied the primary rate constants of the reactions of hydroxyl radicals, benzene, and some of its halo derivatives based on spin trapping using detection by electron paramagnetic resonance (EPR) spectroscopy. The competitive kinetic scheme and the relative initial slopes or signal amplitudes were used to deduce the kinetic model. Based on a previously published rate constant (4.3 x 109 M 1 s ) in the pH range of 6.5 to 10.0 for the reaction of hydroxyl radicals with the spin trap compound 5,5 -d i methy I pyrro I i ne N-oxide (DMPO), rate constants for the reaction of hydroxyl radicals with benzene and its halo derivatives were determined. [Pg.263]

When one looks for methods to detect OH, one always has two keep in mind that these radicals are very reactive, and in the presence of substrates their steady-state concentrations are extremely low even at a high rate of OH production. The fact that OH only absorbs far out in the UV region (Hug 1981) is thus not the reason why an optical detection of OH is not feasible. Electron paramagnetic resonance (EPR) must also fail because of the extremely low steady-state concentrations that prevail in the presence of scavengers. The only possibility to detect their presence is by competition of a suitable OH probe that allows the identification of a characteristic product [probe product, reaction (41)]. When this reaction is carried out in a cellular environment, the reaction with the probe is in competition with all other cellular components which also readily react with OH [reaction (42)]. The concentration of the probe product is then given by Eq. (43), where [ OH ] is the total OH concentration that has been formed in this cellular environment and q is the yield of the probe product per OH that has reacted with the probe. [Pg.57]

Electron paramagnetic resonance (EPR) has been used in kinetics to detect various states of atoms and radicals, which may be reactants, products or transient intermediates [17]. EPR has been used to detect vibrationally excited OH radicals from reactions such as... [Pg.372]

Electron paramagnetic resonance (EPR) is a spectroscopic technique detecting chemical species that have unpaired electrons. A great number of materials contain such paramagnetic entities, which may occur either as electrons in unfilled conduction bands, electrons trapped in radiation damaged sites, or as free radicals, various transition ions, biradicals, triplet states, impurities in semiconductors, as well as other types. Solids, liquids and gases are all accessible to EPR. [Pg.339]

Electron spin resonance (ESR) or electron paramagnetic resonance (EPR) spectroscopy has developed at an outstanding pace since its discovery in 1945 (Zavoiskii 1945), so that at present the technique is very well understood in its many aspects. In wood chemistry, ESR has become an essential tool for the study of the structure and dynamics of molecular systems containing one or more unpaired electrons, i.e., free radicals. ESR has found applications as a highly sensitive tool for the detection and identification of free radical species in lignin and lignin model compounds (Steelink 1966, Kringstad and Lin 1970). A recent literature review of free radicals in wood chemistry is available (Simkovic 1986). [Pg.274]

The existence of free hydroxyl radicals in photo-initiated AOPs can be proven by applying a well-established method, the so-called spin trapping technique. The diamagnetic spin trap 5,5 -dimethyl-1-pyrroline N-oxide (DMPO) forms a stable paramagnetic spin-adduct with OH radicals. Its formation can be detected by electron paramagnetic resonance (EPR) spectroscopy. The underlying chemistry of... [Pg.169]


See other pages where Electron paramagnetic resonance radical detection is mentioned: [Pg.13]    [Pg.1547]    [Pg.141]    [Pg.228]    [Pg.667]    [Pg.281]    [Pg.102]    [Pg.239]    [Pg.74]    [Pg.248]    [Pg.160]    [Pg.190]    [Pg.137]    [Pg.14]    [Pg.276]    [Pg.627]    [Pg.338]    [Pg.1018]    [Pg.128]    [Pg.92]    [Pg.106]    [Pg.186]    [Pg.39]    [Pg.464]    [Pg.467]    [Pg.1657]    [Pg.75]    [Pg.188]    [Pg.673]    [Pg.156]    [Pg.35]    [Pg.145]    [Pg.419]    [Pg.415]    [Pg.87]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Electron detection

Electron paramagnetic

Electron paramagnetic resonance

Electron paramagnetic resonance radicals

Electron radicals

Electronic paramagnetic resonance

Paramagnetic resonance

Radicals detection

Radicals paramagnetic

Resonance Detection

Resonant detection

© 2024 chempedia.info