Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron nanotubes

Ma et who stated that the specific interaction between the imidazolium ion component and the 7i-electronic nanotube surface is essential for the excellent dispersion of CNTs in ionic liquids. The time dependent presence of BMI+ cations in the bound polymer regions as found in Figure 6.22(b) can be supported by the interaction mechanism proposed by Fukusima and Ma et al ... [Pg.188]

Bockrath M, Cobden D H, McEuen P L, Chopra N G, Zettl A, Thess A and Smalley R E 1997 Single-electron transport in ropes of nanotubes Science 275 1922-5. [Pg.2989]

Thus far the importance of carbon cluster chemistry has been in the discovery of new knowl edge Many scientists feel that the earliest industrial applications of the fullerenes will be based on their novel electrical properties Buckminsterfullerene is an insulator but has a high electron affinity and is a superconductor in its reduced form Nanotubes have aroused a great deal of interest for their electrical properties and as potential sources of carbon fibers of great strength... [Pg.437]

The structure-property relations of fullerenes, fullerene-derived solids, and carbon nanotubes are reviewed in the context of advanced technologies for carbon-hased materials. The synthesis, structure and electronic properties of fullerene solids are then considered, and modifications to their structure and properties through doping with various charge transfer agents are reviewed. Brief comments are included on potential applications of this unique family of new materials. [Pg.35]

Regarding a historical perspective on carbon nanotubes, very small diameter (less than 10 nm) carbon filaments were observed in the 1970 s through synthesis of vapor grown carbon fibers prepared by the decomposition of benzene at 1100°C in the presence of Fe catalyst particles of 10 nm diameter [11, 12]. However, no detailed systematic studies of such very thin filaments were reported in these early years, and it was not until lijima s observation of carbon nanotubes by high resolution transmission electron microscopy (HRTEM) that the carbon nanotube field was seriously launched. A direct stimulus to the systematic study of carbon filaments of very small diameters came from the discovery of fullerenes by Kroto, Smalley, and coworkers [1], The realization that the terminations of the carbon nanotubes were fullerene-like caps or hemispheres explained why the smallest diameter carbon nanotube observed would be the same as the diameter of the Ceo molecule, though theoretical predictions suggest that nanotubes arc more stable than fullerenes of the same radius [13]. The lijima observation heralded the entry of many scientists into the field of carbon nanotubes, stimulated especially by the un-... [Pg.36]

The field of carbon nanotube research was launched in 1991 by the initial experimental observation of carbon nanotubes by transmission electron microscopy (TEM) [151], and the subsequent report of conditions for the synthesis of large quantities of nanotubes [152,153]. Though early work was done on... [Pg.61]

The earliest observations of carbon nanotubes with very small (nanometer) diameters [151, 158, 159] are shown in Fig. 14. Here we see results of high resolution transmission electron microscopy (TEM) measurements, providing evidence for m-long multi-layer carbon nanotubes, with cross-sections showing several concentric coaxial nanotubes and a hollow core. One nanotube has... [Pg.62]

Structurally, carbon nanotubes of small diameter are examples of a onedimensional periodic structure along the nanotube axis. In single wall carbon nanotubes, confinement of the stnreture in the radial direction is provided by the monolayer thickness of the nanotube in the radial direction. Circumferentially, the periodic boundary condition applies to the enlarged unit cell that is formed in real space. The application of this periodic boundary condition to the graphene electronic states leads to the prediction of a remarkable electronic structure for carbon nanotubes of small diameter. We first present... [Pg.69]

The ID electronic energy bands for carbon nanotubes [170, 171, 172, 173, 174] are related to bands calculated for the 2D graphene honeycomb sheet used to form the nanotube. These calculations show that about 1/3 of the nanotubes are metallic and 2/3 are semiconducting, depending on the nanotube diameter di and chiral angle 6. It can be shown that metallic conduction in a (n, m) carbon nanotube is achieved when... [Pg.70]

As the nanotube diameter increases, more wave vectors become allowed for the circumferential direction, the nanotubes become more two-dimensional and the semiconducting band gap disappears, as is illustrated in Fig. 19 which shows the semiconducting band gap to be proportional to the reciprocal diameter l/dt. At a nanotube diameter of dt 3 nm (Fig. 19), the bandgap becomes comparable to thermal energies at room temperature, showing that small diameter nanotubes are needed to observe these quantum effects. Calculation of the electronic structure for two concentric nanotubes shows that pairs of concentric metal-semiconductor or semiconductor-metal nanotubes are stable [178]. [Pg.71]

Fig. 20. Electronic 1D density of states per unit cell of a 2D graphene sheet for two (n, 0) zigzag nanotubes (a) the (10,0) nanotube which has semiconducting behavior, (b) the (9, 0) nanotube which has metallic behavior. Also shown in the figure is the density of states for the 2D graphene sheet (dotted line) [178]. Fig. 20. Electronic 1D density of states per unit cell of a 2D graphene sheet for two (n, 0) zigzag nanotubes (a) the (10,0) nanotube which has semiconducting behavior, (b) the (9, 0) nanotube which has metallic behavior. Also shown in the figure is the density of states for the 2D graphene sheet (dotted line) [178].
Experimental measurements to test the remarkable theoretical predictions of the electronic structure of carbon nanotubes are difficult to carry out because... [Pg.72]

Harris has this to say on the breadth of appeal of nanotubes Carbon nanotubes have captured the imagination of physicists, chemists and materials scientists alike. Physicists have been attracted to their extraordinary electronic properties, chemists to their potential as nanotest-tubes and materials scientists to their amazing stiffness, strength and resilience . [Pg.442]

The other striking feature of nanotubes is their extreme stiffness and mechanical strength. Such tubes can be bent to small radii and eventually buckled into extreme shapes which in any other material would be irreversible, but here are still in the elastic domain. This phenomenon has been both imaged by electron microscopy and simulated by molecular dynamics by lijima et al. (1996). Brittle and ductile behaviour of nanotubes in tension is examined by simulation (because of the impossibility of testing directly) by Nardelli et al. (1998). Hopes of exploiting the remarkable strength of nanotubes may be defeated by the difficulty of joining them to each other and to any other material. [Pg.443]

Key Words—Carbon nanotubes, vapor-grown carbon fibers, high-resolution transmission electron microscope, graphite structure, nanotube growth mechanism, toroidal network. [Pg.1]

These observations consummated in a growth model that confers on the millions of aligned zone 1 nanotubes the role of field emitters, a role they play so effectively that they are the dominant source of electron injection into the plasma. In response, the plasma structure, in which current flow becomes concentrated above zone 1, enhances and sustains the growth of the field emission source —that is, zone 1 nanotubes. A convection cell is set up in order to allow the inert helium gas, which is swept down by collisions with carbon ions toward zone 1, to return to the plasma. The helium flow carries unreacted carbon feedstock out of zone 1, where it can add to the growing zone 2 nanotubes. In the model, it is the size and spacing of these convection cells in the plasma that determine the spacing of the zone 1 columns in a hexagonal lattice. [Pg.12]

Abstract—The fundamental relations governing the geometry of carbon nanotubes are reviewed, and explicit examples are pre.sented. A framework is given for the symmetry properties of carbon nanotubes for both symmorphic and non-symmorphic tubules which have screw-axis symmetry. The implications of symmetry on the vibrational and electronic structure of ID carbon nanotube systems are considered. The corresponding properties of double-wall nanotubes and arrays of nanotubes are also discussed. [Pg.27]

Key Words—Single-wall, multi-wall, vibrational inodes, chiral nanotubes, electronic bands, tubule arrays. [Pg.27]

Of particular importance to carbon nanotube physics are the many possible symmetries or geometries that can be realized on a cylindrical surface in carbon nanotubes without the introduction of strain. For ID systems on a cylindrical surface, translational symmetry with a screw axis could affect the electronic structure and related properties. The exotic electronic properties of ID carbon nanotubes are seen to arise predominately from intralayer interactions, rather than from interlayer interactions between multilayers within a single carbon nanotube or between two different nanotubes. Since the symmetry of a single nanotube is essential for understanding the basic physics of carbon nanotubes, most of this article focuses on the symmetry properties of single layer nanotubes, with a brief discussion also provided for two-layer nanotubes and an ordered array of similar nanotubes. [Pg.27]

Regarding the electronic structure, the number of energy bands for ( ,0) zigzag carbon nanotubes is In, the number of carbon atoms per unit cell, with symmetries... [Pg.32]


See other pages where Electron nanotubes is mentioned: [Pg.207]    [Pg.207]    [Pg.24]    [Pg.26]    [Pg.62]    [Pg.65]    [Pg.66]    [Pg.69]    [Pg.70]    [Pg.72]    [Pg.73]    [Pg.73]    [Pg.73]    [Pg.75]    [Pg.75]    [Pg.76]    [Pg.81]    [Pg.86]    [Pg.442]    [Pg.443]    [Pg.1]    [Pg.2]    [Pg.3]    [Pg.8]    [Pg.11]    [Pg.12]    [Pg.12]    [Pg.14]    [Pg.15]    [Pg.32]   
See also in sourсe #XX -- [ Pg.212 , Pg.215 ]




SEARCH



Carbon nanotubes -based electrochemical direct electron transfer, of proteins and

Carbon nanotubes -based electrochemical electronic

Carbon nanotubes direct electron transfer

Carbon nanotubes electron microscopy

Carbon nanotubes electron radiation

Carbon nanotubes electron transfer rate

Carbon nanotubes transmission electron microscopy

Direct electron transfer of proteins and enzymes on carbon nanotube

Electronic Properties of Carbon Nanotubes

Electronic properties carbon nanotubes

Electronic properties, single walled carbon nanotubes

Nanotube electronic structure/properties/device

Nanotubes electron transport

Nanotubes electronic properties

Nanotubes electronic structure

Single-walled nanotubes electronic structure

© 2024 chempedia.info