Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron ionization fragmentations

In addition to the searchable library compilations, several compendial books on the electron ionization fragmentation behavior of compounds have been published [34-36]. They are dated, but nevertheless effectively capture the collective fragmentation information prior to their publication. All of these information sources discuss electron ionization spectra. El fragmentation rules, however, can be of limited assistance in interpreting soft ionization and MS-MS product ion spectra. [Pg.708]

The emitter was loaded by the dipping techniques from an acetone solution. An emitter current of 20 milliamperes was used to obtain the spectrum. The spectrum shews a molecular ion, M+, at m/e = 252 and a MH+ at m/e = 253. The peak at m/e = 258 is due to acetone used for instrument tuning purposes. Several low intensity fragment ions are found and are related to the electron-ionization fragmentation mechanism described above. [Pg.140]

Practical Aspects of Electron Ionization Fragmentation of Organic Ions and Interpretation of El Mass Spectra Electron ionization the classical key to organic MS and indispensable part of every introductory course... [Pg.4]

Electron ionization occurs when an electron beam crosses an ion source (box) and interacts with sample molecules that have been vaporized into the source. Where the electrons and sample molecules interact, ions are formed, representing intact sample molecular ions and also fragments produced from them. These molecular and fragment ions compose the mass spectrum, which is a correlation of ion mass and its abundance. El spectra of tens of thousands of substances have been recorded and form the basis of spectral libraries, available either in book form or stored in computer memory banks. [Pg.15]

Metastable ions yield valuable information on fragmentation in mass spectrometry, providing insight into molecular structure. In electron ionization, metastable ions appear naturally along with the much more abundant normal ions. Abundances of metastable ions can be enhanced by collisionally induced decomposition. [Pg.229]

The positive-ion electron-ionization spectra of BFB and DFTPP must exhibit molecular and specified fragment ions, the relative abundances of which must fall within a predefined range. Ion abundance criteria for BFB and DFTPP are shown in Table 41.1. [Pg.299]

Chemical ionization produces quasi-molecular or protonated molecular ions that do not fragment as readily as the molecular ions formed by electron ionization. Therefore, Cl spectra are normally simpler than El spectra in that they contain abundant quasi-molecular ions and few fragment ions. It is advantageous to run both Cl and El spectra on the same compound to obtain complementary information. [Pg.383]

In the few microseconds that molecular ions (M ) spend in an ion source following electron ionization, many have sufficient energy to decompose to give fragment ions (F, . .., F +). [Pg.411]

A normal, routine electron ionization mass spectrum represents the m/z values and abundances of molecular and fragment ions derived from one or more substances. [Pg.412]

The possible mechanism of ionization, fragmentation of studied compound as well as their desoi ption by laser radiation is discussed. It is shown that the formation of analyte ions is a result of a multi stage complex process included surface activation by laser irradiation, the adsoi ption of neutral analyte and proton donor molecules, the chemical reaction on the surface with proton or electron transfer, production of charged complexes bonded with the surface and finally laser desoi ption of such preformed molecules. [Pg.103]

The mass spectral fragmentations of 9,10-dimethoxy-2,3,4,6,7,ll/)-hexa-hydro-l//-pyrimido[6,l-n]isoquinolin-2-ones 140 and -2,4-diones 141, under electron ionization (at 70 eV) were examined by metastable ion analysis, a collosion-induced dissociation technique and exact mass measurement (97RCM1879). Methyl substituent on N(3) in 140 (R = Me) had a larger effect on both the fragmentation and on the peak intensities, than a methyl substituent on C(6) (R = Me). The ionized molecules of 140 (R = H) were rather stable, whereas 4-phenyl substitution on C(4) of 140 (R = Ph) promoted the fragmentations of the molecular ions. The hexahydro-1//-pyrimido[6,l-n]isoquinoline-2,4-diones 141 were more stable, than the hexahydro-l//-pyrimido[6,l-n]isoquinolin-2-ones 140, and the molecular ions formed base peaks. [Pg.248]

As discussed in Section 3.2.1, an electron ionization (El) spectrum arises from a number of competing and consecutive fragmentation reactions of the molecular... [Pg.294]

Chlornitrofen and nitrofen conditions for GC/MS column, cross-linked methyl silicone capillary (12 m x 0.22-mm i.d., 0.33- am film thickness) column temperature, 60 °C (1 min), 18 °C min to 265 °C inlet, transfer line and ion source temperature, 260, 200 and 200 °C, respectively He gas column head pressure, 7.5 psi injection method, splitless mode solvent delay, 3 min electron ionization voltage, 70 eV scan rate, 0.62 s per scan cycle scanned mass range, m/z 100-400. The retention times for chlornitrofen and nitrofen were 11.8 and 11.3 min, respectively. The main ions of the mass spectrum of chlornitrofen were at m/z 317, 319 and 236. Nitrofen presented a fragmentation pattern with the main ions at m/z 283, 202 and 285. ... [Pg.457]

Metastable atom bombardment (MAB) is a novel ionization method for mass spectrometry invented by Michel Bertrand s group at the University of Montreal, Quebec, Canada, and described by Faubert et al.38 For the identification of bacteria by MS, MAB has a number of significant advantages relative to more familiar ionization techniques. Electron ionization (El) imparts so much excess energy that labile biomolecules break into very small fragments, from which the diagnostic information content is limited since all... [Pg.104]

With the surface ionization source it is generally assumed that the reactant ion internal state distribution is characterized by the source temperature and that the majority of the reactant ions are in their ground electronic state. This contrasts with the uncertainty in reactant state distributions when transition metal ions are generated by electron impact fragmentation of volatile organometallic precursors (10) or by laser evaporation and ionization of solid metal targets (11). Many examples... [Pg.16]

The electron ionization (El) mass spectra of TMS ethers and esters are generally characterised by weak or absent molecular ions. The [M—15]+ ion formed by loss of a methyl radical is generally abundant and in the case of alcoholic functions, the loss of a trimethylsilanol molecule [M—90]+ is also diagnostic. The peak at mJz 73, corresponding to the TMS group, is important in nearly all the TMS-derivative mass spectra. Figure 8.2 shows the fragmentation of TMS esters and ethers in mass spectrometric analyses. [Pg.217]

Electron ionization (El) mass spectra of 1,3,4-oxadiazole itself and its 2-mono- and 2,5-disubstituted derivatives, including the proposed main fragmentation pathways have already been discussed in CHEC(1984) and CHEC-11(1996) <1984CHEC(6)427, 1996CHEC-II(4)268>. Molecular ions of the compounds are usually of high intensity and the most important fragmentation pathways of the molecular ions involve loss of respective HCN, RCN molecules, or RCO cations. Loss of HNCO is significant in the spectra of 2-amino derivatives. [Pg.403]

Electron ionization (earlier called electron impact) (see Chapter 2, Section 2.1.6) occupies a special position among ionization techniques. Historically it was the first method of ionization in mass spectrometry. Moreover it remains the most popular in mass spectrometry of organic compounds (not bioorganic). The main advantages of electron ionization are reliability and versatility. Besides that the existing computer libraries of mass spectra (Wiley/NIST, 2008) consist of electron ionization spectra. The fragmentation mles were also developed for the initial formation of a radical-cation as a result of electron ionization. [Pg.129]


See other pages where Electron ionization fragmentations is mentioned: [Pg.43]    [Pg.221]    [Pg.48]    [Pg.43]    [Pg.221]    [Pg.48]    [Pg.136]    [Pg.160]    [Pg.225]    [Pg.228]    [Pg.237]    [Pg.266]    [Pg.539]    [Pg.548]    [Pg.410]    [Pg.37]    [Pg.54]    [Pg.52]    [Pg.67]    [Pg.74]    [Pg.94]    [Pg.109]    [Pg.116]    [Pg.164]    [Pg.84]    [Pg.467]    [Pg.53]    [Pg.316]    [Pg.740]    [Pg.285]    [Pg.287]    [Pg.474]    [Pg.95]    [Pg.376]    [Pg.130]   
See also in sourсe #XX -- [ Pg.1699 ]

See also in sourсe #XX -- [ Pg.299 , Pg.300 , Pg.301 , Pg.302 , Pg.303 ]




SEARCH



12-electron fragment

Electron Ionization and Fragmentation Rates

Electron ionization fragment ions

Electron ionization fragmentation pathways

Electron ionization mass spectrometry fragmentation

© 2024 chempedia.info