Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron energy absorption

In order to understand features of oxidative one-electron transfer, it is reasonable to compare average energies of formation between cation-radicals and anion-radicals. One-electron addition to a molecule is usually accompanied by energy decrease. The amount of energy reduced corresponds to molecule s electron affinity. For instance, one-electron reduction of aromatic hydrocarbons can result in the energy revenue from 10 to 100 kJ mol-1 (Baizer Lund 1983). If a molecule detaches one electron, energy absorption mostly takes place. The needed amount of energy consumed is determined by molecule s ionization potential. In particular, ionization potentials of aromatic hydrocarbons vary from 700 to 1,000 kJ-mol 1 (Baizer Lund 1983). [Pg.93]

A brief review of the physics of electron energy absorption In matter, and of the equipment used to accomplish electron Initiation of these reactions at high dose rates (speeds) Is now presented. [Pg.535]

At a surface, not only can the atomic structure differ from the bulk, but electronic energy levels are present that do not exist in the bulk band structure. These are referred to as surface states . If the states are occupied, they can easily be measured with photoelectron spectroscopy (described in section A 1.7.5.1 and section Bl.25.2). If the states are unoccupied, a teclmique such as inverse photoemission or x-ray absorption is required [22, 23]. Also, note that STM has been used to measure surface states by monitoring the tunnelling current as a fiinction of the bias voltage [24] (see section BT20). This is sometimes called scamiing tuimelling spectroscopy (STS). [Pg.293]

AES Auger electron spectroscopy After the ejection of an electron by absorption of a photon, an atom stays behind as an unstable Ion, which relaxes by filling the hole with an electron from a higher shell. The energy released by this transition Is taken up by another electron, the Auger electron, which leaves the sample with an element-specific kinetic energy. Surface composition, depth profiles... [Pg.1852]

Our intention is to give a brief survey of advanced theoretical methods used to detennine the electronic and geometric stmcture of solids and surfaces. The electronic stmcture encompasses the energies and wavefunctions (and other properties derived from them) of the electronic states in solids, while the geometric stmcture refers to the equilibrium atomic positions. Quantities that can be derived from the electronic stmcture calculations include the electronic (electron energies, charge densities), vibrational (phonon spectra), stmctiiral (lattice constants, equilibrium stmctiires), mechanical (bulk moduli, elastic constants) and optical (absorption, transmission) properties of crystals. We will also report on teclmiques used to study solid surfaces, with particular examples drawn from chemisorption on transition metal surfaces. [Pg.2201]

You can use Cl to predict electronic spectra. Since the Cl wave function provides groun d state an d excited state energies, you can obtain electron ic absorption frequen cies from the dlfferen ces between the energy of the ground state and the excited states. [Pg.39]

Section 13 21 Transitions between electronic energy levels involving electromagnetic radiation m the 200-800 nm range form the basis of UV VIS spec troscopy The absorption peaks tend to be broad but are often useful m indicating the presence of particular tt electron systems within a mole cule... [Pg.577]

In absorption spectroscopy a beam of electromagnetic radiation passes through a sample. Much of the radiation is transmitted without a loss in intensity. At selected frequencies, however, the radiation s intensity is attenuated. This process of attenuation is called absorption. Two general requirements must be met if an analyte is to absorb electromagnetic radiation. The first requirement is that there must be a mechanism by which the radiation s electric field or magnetic field interacts with the analyte. For ultraviolet and visible radiation, this interaction involves the electronic energy of valence electrons. A chemical bond s vibrational energy is altered by the absorbance of infrared radiation. A more detailed treatment of this interaction, and its importance in deter-... [Pg.380]

As shown in Fig. 7, a large increase in optical absorption occurs at higher photon energies above the HOMO-LUMO gap where electric dipole transitions become allowed. Transmission spectra taken in this range (see Fig. 7) confirm the similarity of the optical spectra for solid Ceo and Ceo in solution (decalin) [78], as well as a similarity to electron energy loss spectra shown as the inset to this figure. The optical properties of solid Ceo and C70 have been studied over a wide frequency range [78, 79, 80] and yield the complex refractive index n(cj) = n(cj) + and the optical dielectric function... [Pg.51]

The preceding empirical measures have taken chemical reactions as model processes. Now we consider a different class of model process, namely, a transition from one energy level to another within a molecule. The various forms of spectroscopy allow us to observe these transitions thus, electronic transitions give rise to ultraviolet—visible absorption spectra and fluorescence spectra. Because of solute-solvent interactions, the electronic energy levels of a solute are influenced by the solvent in which it is dissolved therefore, the absorption and fluorescence spectra contain information about the solute-solvent interactions. A change in electronic absorption spectrum caused by a change in the solvent is called solvatochromism. [Pg.435]


See other pages where Electron energy absorption is mentioned: [Pg.377]    [Pg.377]    [Pg.584]    [Pg.938]    [Pg.1306]    [Pg.1318]    [Pg.1325]    [Pg.47]    [Pg.1134]    [Pg.565]    [Pg.586]    [Pg.383]    [Pg.426]    [Pg.31]    [Pg.328]    [Pg.340]    [Pg.193]    [Pg.128]    [Pg.285]    [Pg.299]    [Pg.333]    [Pg.390]    [Pg.446]    [Pg.446]    [Pg.446]    [Pg.449]    [Pg.453]    [Pg.167]    [Pg.170]    [Pg.135]    [Pg.326]    [Pg.50]    [Pg.565]    [Pg.586]    [Pg.1177]    [Pg.507]    [Pg.428]    [Pg.671]    [Pg.731]    [Pg.795]   
See also in sourсe #XX -- [ Pg.104 , Pg.105 ]




SEARCH



Electron absorption

Electronic absorption

Electronic absorption spectra energy

Electronic state, infrared energy absorption

© 2024 chempedia.info