Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron deprotonation

The 3-to-17oxo-bridged alkaloids kopsidines A-C (242 - 244) have been synthesized in high yields via the stable iminium salt obtained from electrochemical oxidation (Pt anode, 30% CHiCh-MeCN, O.IM Et4NClO4) of kopsingine (191) (Scheme 9) [168]. Electrooxidation of kopsingine resulted in stepwise loss of an electron, deprotonation, followed by loss of another... [Pg.370]

When 17-electron complexes generated by oxidation decompose by deprotonation, the overall stoichiometry is highly dependent on the nature of the base capturing the proton, on the stability of the proton transfer products, and on the rate of oxidation. Equation 14 shows proton capture by an external base (e.g. pyridine or lutidine, often used for this kind of studies). The resulting 17-electron deprotonated radical may in principle evolve by either dimerization (equation 15), or by reaction with the paramagnetic hydride precursor, (equation 16), or by subsequent oxidation, which is usually assumed to be preceded by solvent coordination (equations 17-18) [86]. The oxidation potential of M(S) may be less positive than that of the MH precursor, resulting in an overall two-electron process for the oxidation of MH. [Pg.162]

The situation in figure C2.8.5(b) is different in that, in addition to the mechanism in figure C2.8.5(a), reduction of the redox species can occur at the counter-electrode. Thus, electron transfer tlirough the layer may not be needed, as film growth can occur with OH species present in the electrolyte involving a (field-aided) deprotonation of the film. The driving force is provided by the applied voltage, AU. [Pg.2724]

The large sulfur atom is a preferred reaction site in synthetic intermediates to introduce chirality into a carbon compound. Thermal equilibrations of chiral sulfoxides are slow, and parbanions with lithium or sodium as counterions on a chiral carbon atom adjacent to a sulfoxide group maintain their chirality. The benzylic proton of chiral sulfoxides is removed stereoselectively by strong bases. The largest groups prefer the anti conformation, e.g. phenyl and oxygen in the first example, phenyl and rert-butyl in the second. Deprotonation occurs at the methylene group on the least hindered site adjacent to the unshared electron pair of the sulfur atom (R.R. Fraser, 1972 F. Montanari, 1975). [Pg.8]

The high nucleophilicity of sulfur atoms is preserved, even if it is bound to electron withdrawing carbonyl groups. Thiocarboxylales, for example, substitute bromine, e.g. of a-bromo ketones. In the presence of bases the or-acylthio ketones deprotonate and rearrange to episulfides. After desulfurization with triphenylphosphine, 1,3-diketones are formed in good yield. Thiolactams react in the same way, and A. Eschenmoser (1970) has used this sequence in his vitamin B]2 synthesis (p. 261). [Pg.59]

The TT-allylpalladium complexes 241 formed from the ally carbonates 240 bearing an anion-stabilizing EWG are converted into the Pd complexes of TMM (trimethylenemethane) as reactive, dipolar intermediates 242 by intramolecular deprotonation with the alkoxide anion, and undergo [3 + 2] cycloaddition to give five-membered ring compounds 244 by Michael addition to an electron-deficient double bond and subsequent intramolecular allylation of the generated carbanion 243. This cycloaddition proceeds under neutral conditions, yielding the functionalized methylenecyclopentanes 244[148], The syn-... [Pg.322]

Chemical off—on switching of the chemiluminescence of a 1,2-dioxetane (9-benzyhdene-10-methylacridan-l,2-dioxetane [66762-83-2] (9)) was first described in 1980 (33). No chemiluminescence was observed when excess acetic acid was added to (9) but chemiluminescence was recovered when triethylamine was added. The off—on switching was attributed to reversible protonation of the nitrogen lone pair and modulation of chemically induced electron-exchange luminescence (CIEEL). Base-induced decomposition of a 1,2-dioxetane of 2-phen5l-3-(4 -hydroxyphenyl)-l,4-dioxetane (10) by deprotonation of the phenoHc hydroxy group has also been described (34). [Pg.264]

Hydroxyindole (181) represents a well known example of a compound in which the hydroxyl group is to the ring heteroatom. The equilibrium mixture again contains mainly the carbonyl form (182), indoxyl. Deprotonation gives a reactive ambident anion which can be methylated either on oxygen or C-2 (Scheme 73). Indoxyl is easily oxidized to indigo (184), which may be formed by dimerization of the radical (183) produced by electron loss from the anion. [Pg.76]

Azole iV-oxides, iV-imides and iV-ylides are formally betaines derived from iV-hydroxy-, iV-amino- and iV-alkyl-azolium compounds. Whereas iV-oxides (Section 4.02.3.12.6) are usually stable as such, in most cases theiV-imides (Section 4.02.3.12.5) andiV-ylides (Section 4.02.3.12.3) are found as salts which deprotonate readily only if the exocyclic nitrogen or carbon atom carries strongly electron-withdrawing groups. [Pg.43]

In some cases, especially in the presence of strongly electron attracting substituents, isomerization to acid amides has been observed, probably preceded by deprotonation at ring carbon. Even (56), known for its stability towards common alkali, undergoes this rearrangement when a lithium amide is used as the base (80JOC1489). [Pg.208]

Dioxins aromaticity, 3, 945 deprotonation, 3, 972 electronic energy levels, 3, 946 electrophilic reactions, 3, 965 half-wave potential, 3, 968... [Pg.608]

NMR and, 3, 951 aromaticity, 3, 945 delocalization energy, 3, 959 deprotonation, 3, 972 disulfones reactions, 3, 970 double bond character, 3, 945 electronic energy levels, 3, 946 electrophilic reactions, 3, 965 electrophilic substitution, 3, 960 half-wave potential, 3, 968 NMR, 3, 952 H NMR, 3, 951 nucleophilic reactions, 3, 969 oxidation, 3, 967 oxides... [Pg.615]

There are two opposing substituent effects on this reaction. Electron-attracting aiyl substituents favor the deprotonation but disfavor the elimination step. The observed substituent effects are small, and under some conditions the Hammett plot is nonlinear. [Pg.456]

Aminolysis of esters often reveals general base catalysis and, in particular, a contribution to the reaction rate fi om terms that are second-order in the amine. The general base is believed to function by deprotonating the zwitterionic tetrahedral intermediate. Deprotonation of the nitrogen facilitates breakdown of the tetrahedral intermediate, since the increased electron density at nitrogen favors expulsion of an anion ... [Pg.479]

The relative stability of the anions derived from cyclopropene and cyclopentadiene by deprotonation is just the reverse of the situation for the cations. Cyclopentadiene is one of the most acidic hydrocarbons known, with a of 16.0. The plCs of triphenylcyclo-propene and trimethylcyclopropene have been estimated as 50 and 62, respectively, from electrochemical cycles. The unsubstituted compound would be expected to fall somewhere in between and thus must be about 40 powers of 10 less acidic than cyclopentadiene. MP2/6-31(d,p) and B3LYP calculations indicate a small destabilization, relative to the cyclopropyl anion. Thus, the six-7c-electron cyclopentadienide ion is enormously stabilized relative to the four-7c-electron cyclopropenide ion, in agreement with the Hixckel rule. [Pg.526]

The Hiickel rule predicts aromaticity for the six-7c-electron cation derived from cycloheptatriene by hydride abstraction and antiaromaticity for the planar eight-rc-electron anion that would be formed by deprotonation. The cation is indeed very stable, with a P Cr+ of -1-4.7. ° Salts containing the cation can be isolated as a product of a variety of preparative procedures. On the other hand, the pK of cycloheptatriene has been estimated at 36. ° This value is similar to those of normal 1,4-dienes and does not indicate strong destabilization. Thus, the seven-membered eight-rc-electron anion is probably nonplanar. This would be similar to the situation in the nonplanar eight-rc-electron hydrocarbon, cyclooctatetraene. [Pg.526]

Obtain energies for each ion and for their correspondin precursors benzoic acid,phenol and cyclohexanol). Us this information to calculate the energy for each of the abov deprotonation reactions. (The energy of proton is given left.) Is the trend consistent with the experimental pKa dat (see table at left) Does deprotonation energy parade charge delocalization in these systems Explain ho electron delocalization affects the reactivity of these acidf... [Pg.52]

Examine and eompare eleetrostatie potential maps for the eycloalkanes. Is there any evidenee of earbon-carbon bonds being espeeially eleetron rieh (subject to electrophilic attack), or of CH bonds being espeeially electron poor (subject to deprotonation) ... [Pg.83]

Several intermediates are involved in the latter reaction. The first is a radical anion resulting from electron transfer from sodium to the alkyne. This then deprotonates ammonia leading to a vinyl radical. The process repeats (electron transfer and deprotonation), and involves a vinyl anion intermediate. [Pg.117]

Methylcyclohexanone, pK 20, is typical of a weak acid that undergo H/D exchange. Identify the acidic protons of 2-methylcyclohexanone, i.e., those most susceptible to attack by base, as positions for which the value of the lowest-unoccupied molecular orbital (LUMO) is large. Use a LUMO map (the value of the LUMO mapped onto the electron density surface). Does this analysis correctly anticipate which of the anions obtained by deprotonation of 2-methylcyclohexanone is actually most stable Are any of the other ions of comparable stability, or are they aU much less stable ... [Pg.161]

How many different enolates may arise from deprotonation of 2,4-pentanedione Draw Lewis structures for each, and predict which is likely to be the most stable. Check your conclusions by examining the energies of the different possible enolates (enolate A, B...). Is the most stable enolate that derived from deprotonation of the most electron-poor hydrogen Compare the electrostatic potential maps of the anions with each other and with your Lewis structures. Revise your drawings to be consistent with the maps. Why is one of the enolates preferred over the others ... [Pg.163]


See other pages where Electron deprotonation is mentioned: [Pg.200]    [Pg.200]    [Pg.1602]    [Pg.190]    [Pg.115]    [Pg.1115]    [Pg.5]    [Pg.539]    [Pg.309]    [Pg.87]    [Pg.530]    [Pg.413]    [Pg.587]    [Pg.60]    [Pg.41]    [Pg.1115]    [Pg.100]    [Pg.784]    [Pg.163]    [Pg.189]    [Pg.616]    [Pg.176]    [Pg.59]    [Pg.119]    [Pg.122]    [Pg.129]    [Pg.130]    [Pg.177]    [Pg.127]    [Pg.159]    [Pg.13]   
See also in sourсe #XX -- [ Pg.176 ]




SEARCH



© 2024 chempedia.info