Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron delocalization allylic radicals

Transfer of this electron to the diene gives a delocalized allylic radical anion, which can be drawn in various ways and which attaclcs another diene. This process can also be drawn in various ways as a radical dimerization, for example. [Pg.505]

Delocalization of the unpaired electron stabilizes allylic radicals and causes reactions that generate them to proceed more readily than those that give simple alkyl radicals. Compare, for example, the bond dissociation enthalpies of the primary C—H bonds of propane and propene ... [Pg.378]

Breaking an allylic C—H bond in propene requires 55 kJ/mol less energy than a bond to a primary hydrogen in propane. Allyl radical is stabilized by ir-electron delocalization propyl radical is not. [Pg.378]

Just as allyl cation is stabilized by electron delocalization so is allyl radical... [Pg.395]

Allyl radical is a conjugated system in which three electrons are delocalized over three carbons The resonance structures indicate that the unpaired electron has an equal probability of being found at C 1 or C 3 C 2 shares none of the unpaired electron... [Pg.395]

Breaking a bond to a primary hydrogen atom m propene requires less energy by 42 kJ/mol (10 kcal/mol) than m propane The free radical produced from propene is allylic and stabilized by electron delocalization the one from propane is not... [Pg.396]

We attributed the decreased bond dissociation energy in propene to stabilization of allyl radical by electron delocalization Similarly electron delocalization stabilizes benzyl rad ical and weakens the benzylic C—H bond... [Pg.441]

The transition state involves six partially delocalized electrons being transformed from one 1,5-diene system to another. The transition state could range in character from a 1,4-diradical to two nearly independent allyl radicals, depending on whether bond making or bond breaking is more advanced. The general framework for understanding the substituent effects is that the reactions are concerted with a relatively late transition state with well-developed C(l)—C(6) bonds. [Pg.626]

The allyl radical would be expected to be planar in order to maximize n delocalization. Molecular structure parameters have been obtained from EPR, IR, and electron diffraction measurements and confirm that the radical is planar. ... [Pg.679]

The usefulness of spin density surfaces can be seen in the following models of methyl radical, CH3, and allyl radical, CH2=CHCH2. In each case, the surface is shaped somewhat like a 2p atomic orbital on carbon. There are some interesting differences between the two radicals, however. While the unpaired electron is confined to the carbon atom in methyl radical, it is delocalized over the two terminal carbons in allyl radical. [Pg.28]

The chain propagation step consists of a reaction of allylic radical 3 with a bromine molecule to give the allylic bromide 2 and a bromine radical. The intermediate allylic radical 3 is stabilized by delocalization of the unpaired electron due to resonance (see below). A similar stabilizing effect due to resonance is also possible for benzylic radicals a benzylic bromination of appropriately substituted aromatic substrates is therefore possible, and proceeds in good yields. [Pg.299]

In molecular orbital terms, the stability of the allyl radical is due to the fact that the unpaired electron is delocalized, or spread out, over an extended 7T orbital network rather than localized at only one site, as shown by the computer-generated MO in Fig 10.3. This delocalization is particularly apparent in the so-called spin density surface in Figure 10.4, which shows the calculated location, of the unpaired electron. The two terminal carbons share the unpaired electron equally. [Pg.341]

In addition to its effect on stability, delocalization of the unpaired electron in the allyl radical has other chemical consequences. Because the unpaired electron is delocalized over both ends of the nr orbital system, reaction with Br2 can occur at either end. As a result, allylic bromination of an unsymmetrical alkene often leads to a mixture of products. For example, bromination of 1-octene gives a mixture of 3-bromo-l-octene and l-bromo-2-octene. The two products are not formed in equal amounts, however, because the intermediate allylic radical is... [Pg.341]

The increase of the exocyclic C—C bond stretching frequency from 1208 cm in toluene to 1264 cm in the benzyl radical and the simultaneous decrease of the C—C ring bond stretching frequencies (from 1494 and 1460cm to 1469 and 1446cm , respectively) result from electron density delocalization in the benzyl system. Furthermore, the force constant value for the C—C bond in the C6H5CH2 radical (5.5 X 10 N m ) is between the values for the ordinary C—C bond (4.5 x 10 N m ) and the double C=C bond (9.0 X 10 N m ) and is close to the corresponding force constant in the allyl radical (5.8 x 10 N m ). [Pg.43]

The observation that in the case of PCSO there is no formation of propanol while allyl alcohol is formed from ACSO agrees with the resonance stabilization of the allyl radical and hence weaker bond for S-allyl than for S-propyl. The yield of allyl alcohol from irradiation of ACSO is considerably greater than that from S-allyl-L-cysteine, probably due to energy delocalization by the four p electrons of the S atom. [Pg.910]

Notably, the bicyclic radical 41 is localized, in sharp contrast to the allylic-type delocalization of cyclotrigermenyl radical 39 and cyclotetrasilenyl radical 40. The obvions reason for snch a distinction is the absence of the neighboring to the Ge-radical center tt-bond necessary for the effective throngh-bond delocalization of the unpaired electron in the radical 41, whereas the through-space radical-C=C bond interaction is not sufficiently strong to indnce the effective delocalization of the unpaired electron. [Pg.81]

The unpaired electron of the allyl radical and the two electrons of the k bond are delocalized over all three carbon atoms. [Pg.502]

Photolysis of vinyldiazomethane in an organic glass at 6 K leads to vinylcarbene in its triplet ground state,14,56,57 which — as is indicated by the ESR spectra — forms a pair of the s-cis and s-trans isomer. The delocalization of one unpaired electron in the rr-system is similar to that of the allyl radical, while the other unpaired electron is localized in a sp2-orbital at the carbenic C atom (see formula T-33 ).58... [Pg.125]

The most common and also most effective mechanism of radical stabilization involves the resonant delocalization of the unpaired spin into an adjacent 7r system, the allyl radical being the prototype case. A minimal orbital interaction diagram describing this type of stabilization mechanism involves the unpaired electron located in a 7r-type orbital at the formal radical center and the 7r- and tt -orbitals of the n system (Scheme 1). [Pg.178]

Stabilized allyl radical will be stabilized further if substituents are introduced. This stabilization occurs to different degrees in the ground state and the transition structure for rotation. In the ground state the substituent acts on a delocalized radical. Its influence on this state should be smaller than in the transition structure, where it acts on a localized radical. In the transition state the double bond and the atom with the unpaired electron are decoupled, i.e. in the simple Hiickel molecular orbital picture, the electron is localized in an orbital perpendicular to the jt(- c bond. [Pg.160]

In this chapter we describe four rather different three-electron systems the it system ofthe allyl radical, the HeJ ionic molecule, the valence orbitals ofthe BeHmolecule, and the Li atom. In line with the intent of Chapter 4, these treatments are included to introduce the reader to systems that are more complicated than those of Chapters 2 and 3, but simple enough to give detailed illustrations of the methods of Chapter 5. In each case we will examine MCVB results as an example of localized orbital treatments and SCVB results as an example of delocalized treatments. Of course, for Li this distinction is obscured because there is only a single nucleus, but there are, nevertheless, noteworthy points to be made for that system. The reader should refer back to Chapter 4 for a specific discussion of the three-electron spin problem, but we will nevertheless use the general notation developed in Chapter 5 to describe the results because it is more efficient. [Pg.125]

Delocalization of the odd electron into extended n systems results in considerable radical stabilization. The C—H BDE at C3 of propene is reduced by 13 kcal/mol relative to that of ethane. That the stabilization effect in the allyl radical is due primarily to delocalization in the n system is shown by the fact that the rotational barrier for allyl is 9 kcal/mol greater than that for ethyl. Extending the conjugated system has a nearly additive effect, and the C—H BDE at C3 of 1,4-pentadiene is 10 kcal/mol smaller than that of propene. Delocalization of the odd electron in the benzyl radical results in about one-half of the electron density residing at the benzylic carbon, and the C—H BDE of the methyl group in toluene is the same as that in propene. [Pg.124]

The relative stabilities of radicals follow the same trend as for carhoca-tions. Like carbocations, radicals are electron deficient, and are stabilized by hyperconjugation. Therefore, the most substituted radical is most stable. For example, a 3° alkyl radical is more stable than a 2° alkyl radical, which in turn is more stable than a 1° alkyl radical. Allyl and benzyl radicals are more stable than alkyl radicals, because their unpaired electrons are delocalized. Electron delocalization increases the stability of a molecule. The more stable a radical, the faster it can be formed. Therefore, a hydrogen atom, bonded to either an allylic carbon or a benzylic carbon, is substituted more selectively in the halogenation reaction. The percentage substitution at allylic and benzyhc carbons is greater in the case of bromination than in the case of chlorination, because a bromine radical is more selective. [Pg.195]


See other pages where Electron delocalization allylic radicals is mentioned: [Pg.82]    [Pg.82]    [Pg.303]    [Pg.395]    [Pg.124]    [Pg.395]    [Pg.114]    [Pg.80]    [Pg.502]    [Pg.166]    [Pg.139]    [Pg.300]    [Pg.288]    [Pg.222]    [Pg.80]    [Pg.200]    [Pg.234]    [Pg.402]   
See also in sourсe #XX -- [ Pg.395 ]

See also in sourсe #XX -- [ Pg.376 , Pg.377 ]




SEARCH



Allyl radical

Allylic radicals

Allylic radicals delocalization

Electron delocalization

Electron delocalized

Electron radicals

Electronic delocalization

Radical allylation

Radicals) allylations

© 2024 chempedia.info