Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron addition-elimination

There are alternatives to the addition-elimination mechanism for nucleophilic substitution of acyl chlorides. Certain acyl chlorides are known to react with alcohols by a dissociative mechanism in which acylium ions are intermediates. This mechanism is observed with aroyl halides having electron-releasing substituents. Other acyl halides show reactivity indicative of mixed or borderline mechanisms. The existence of the SnI-like dissociative mechanism reflects the relative stability of acylium ions. [Pg.486]

Kinetics of the reaction of p-nitrochlorobenzene with the sodium enolate of ethyl cyanoacetate are consistent with this mechanism. Also, radical scavengers have no effect on the reaction, contrary to what would be expected for a chain mechanism in which aryl radicals would need to encounter the enolate in a propagation step. The reactant, /i-nitrophenyl chloride, however, is one which might also react by the addition-elimination mechanism, and the postulated mechanism is essentially the stepwise electron-transfer version of this mechanism. The issue then becomes the question of whether the postulated radical pair is a distinct intermediate. [Pg.732]

Because of thetr electron deficient nature, fluoroolefms are often nucleophihcally attacked by alcohols and alkoxides Ethers are commonly produced by these addition and addition-elimination reactions The wide availability of alcohols and fliioroolefins has established the generality of the nucleophilic addition reactions The mechanism of the addition reaction is generally believed to proceed by attack at a vinylic carbon to produce an intermediate fluorocarbanion as the rate-determining slow step The intermediate carbanion may react with a proton source to yield the saturated addition product Alternatively, the intermediate carbanion may, by elimination of P-halogen, lead to an unsaturated ether, often an enol or vinylic ether These addition and addition-elimination reactions have been previously reviewed [1, 2] The intermediate carbanions resulting from nucleophilic attack on fluoroolefins have also been trapped in situ with carbon dioxide, carbonates, and esters of fluorinated acids [3, 4, 5] (equations 1 and 2)... [Pg.729]

When written in this way it is clear what is happening. The mechanisms of these reactions are probably similar, despite the different p values. The distinction is that in Reaction 10 the substituent X is on the substrate, its usual location but in Reaction 15 the substituent changes have been made on the reagent. Thus, electron-withdrawing substituents on the benzoyl chloride render the carbonyl carbon more positive and more susceptible to nucleophilic attack, whereas electron-donating substituents on the aniline increase the electron density on nitrogen, also facilitating nucleophilic attack. The mechanism may be an addition-elimination via a tetrahedral intermediate ... [Pg.331]

Two pathways for the reaction of sulfate radical anion with monomers have been described (Scheme 3.81).252 These are (A) direct addition to the double bond or (B) electron transfer to generate a radical cation. The radical cation may also be formed by an addition-elimination sequence. It has been postulated that the radical cation can propagate by either cationic or a radical mechanism (both mechanisms may occur simultaneously). However, in aqueous media the cation is likely to hydrate rapidly to give a hydroxyelhyl chain end. [Pg.129]

In the case of electron-deficient monomers (e.g, acrylics) it is accepted that reaction occurs by initial addition of the sulfate radical anion to the monomer. Reactions of sulfate radical anion with acrylic acid derivatives have been shown to give rise to the sulfate adduct under neutral or basic conditions but under acidic conditions give the radical cation probahly by an addition-elimination process. [Pg.129]

Nucleophilic substitutions of halogen by the addition-elimination pathway in electron-deficient six-membered hetarenes by sulfinate anions under formation of sulfones have been described earlier120. The corresponding electron-poor arenes behave similarly121 (equation 30). A special type of this reaction represents the inverse Smiles rearrangement in equation 31122. [Pg.177]

The difference in reactivity is not as much as is generally observed in nucleophilic aromatic substitution in solution by an addition-elimination mechanism (ref. 25). Substituents with electron withdrawing capabilities enhance the rate of the reaction therefore decabromobiphenyl ether reacts nearly 2 times faster than 1,2,3,4-tetrabromodibenzodioxin. [Pg.380]

The electrode reaction of an organic substance that does not occur through electrocatalysis begins with the acceptance of a single electron (for reduction) or the loss of an electron (for oxidation). However, the substance need not react in the form predominating in solution, but, for example, in a protonated form. The radical formed can further accept or lose another electron or can react with the solvent, with the base electrolyte (this term is used here rather than the term indifferent electrolyte) or with another molecule of the electroactive substance or a radical product. These processes include substitution, addition, elimination, or dimerization reactions. In the reactions of the intermediates in an anodic process, the reaction partner is usually nucleophilic in nature, while the intermediate in a cathodic process reacts with an electrophilic partner. [Pg.396]

Neutral borabenzene-PMe3, generated through the route described in Scheme 2, reacts with a variety of anionic nucleophiles to furnish 5-substituted borataben-zenes (Scheme 7).15 This approach provides efficient access to boratabenzenes that bear a range of boron substituents (H, C, N, O, P) with diverse electronic and steric properties.16 Mechanistic studies establish that this novel aromatic substitution process follows an addition-elimination pathway. [Pg.105]

Transformations through 1,2-addition to a formal PN double bond within the delocalized rc-electron system have been reported for the benzo-l,3,2-diazaphospholes 5 which are readily produced by thermally induced depolymerization of tetramers 6 [13] (Scheme 2). The monomers react further with mono- or difunctional acyl chlorides to give 2-chloro-l,3,2-diazaphospholenes with exocyclic amide functionalities at one nitrogen atom [34], Similar reactions of 6 with methyl triflate were found to proceed even at room temperature to give l-methyl-3-alkyl-benzo-l,3,2-diazaphospholenium triflates [35, 36], The reported butyl halide elimination from NHP precursor 13 to generate 1,3,2-diazaphosphole 14 upon heating to 250°C and the subsequent amine addition to furnish 15 (Scheme 5) illustrates another example of the reversibility of addition-elimination reactions [37],... [Pg.71]

Steenken, S. One Electron Redox Reactions between Radicals and Organic Molecules. An Addition/Elimination (Inner-Sphere) Path. 177, 125-146 (1996). [Pg.162]

Application of catalysts allows sometimes executing this addition/elimination process even with alkenes without any electron-deficient substituent attached. Such case is illustrated by an example in Scheme 15. In the presence of mercury-(n) acetate and trifluoroacetic acid, 1,2,3-triazoles 146 react with vinyl acetate at 70 °G to give vinyl derivatives 148 in good yields (70-88%) <2002RJ01056>. Adducts 147 are presumed to be intermediates in this process. [Pg.23]

It seems that no general mechanistic description fits all these experiments. Some of the reactions proceed via an addition-elimination mechanism, while in others the primary step is electron transfer from the arene with formation of a radical cation. This second mechanism is then very similar to the electrochemical anodic substitution/addition sequence. [Pg.71]

Nucleophilic attack by a trialkyl phosphite on a significantly electron-deficient aromatic ring involving addition-elimination of a nitro group (as nitrite anion), which completes the final step of the normal Michaelis-Arbuzov reaction (Figure... [Pg.168]

Some experimental evidences are in agreement with this proposed mechanism. For example, coordinating solvents like diethyl ether show a deactivating effect certainly due to competition with a Lewis base (149). For the same reason, poor reactivity has been observed for the substrates carrying heteroatoms when an aluminum-based Lewis acid is used. Less efficient hydrovinylation of electron-deficient vinylarenes can be explained by their weaker coordination to the nickel hydride 144, hence metal hydride addition to form key intermediate 146. Isomerization of the final product can be catalyzed by metal hydride through sequential addition/elimination, affording the more stable compound. Finally, chelating phosphines inhibit the hydrovinylation reaction. [Pg.320]

These 6n electron additions and eliminations are apparently concerted and thus come in the category of linear cheletropic process (tt4s + co2s cycloaddition and 7t2v + o2.v + c2s cycloelimination). [Pg.98]

Aromatic halides react with crown ether-complexed K02 by an electron-transfer mechanism and not by nucleophilic attack, as was shown by Frimer and Rosenthal (1976) using esr spectroscopy. The corresponding phenol is the main reaction product (Yamaguchi and Van der Plas, 1977). Esters are saponified by the K02/18-crown-6 complex in benzene, presumably by an addition-elimination pathway (San Fillippo et al., 1976). The same complex has been used to cleave cr-keto-, or-hydroxy-, and or-halo-ketones, -esters, and -carboxylic acids into the corresponding carboxylic acids in synthetically useful quantities (San Fillippo et al., 1976). [Pg.358]

Equation lb, b is the defining equation for the addition-elimination route for one-electron transfer between X" and Y. It is important to note that although X-Y is a radical and the overall reaction results in the transfer of a single electron, in the actual electron transfer step an electron pair is shifted rather than a single electron [5]. This means that electron transfer is the consequence of a heterolysis reaction in which the electron pair joining X and Y ends up at... [Pg.126]


See other pages where Electron addition-elimination is mentioned: [Pg.117]    [Pg.224]    [Pg.997]    [Pg.191]    [Pg.32]    [Pg.279]    [Pg.333]    [Pg.121]    [Pg.429]    [Pg.228]    [Pg.453]    [Pg.104]    [Pg.188]    [Pg.321]    [Pg.3]    [Pg.255]    [Pg.19]    [Pg.24]    [Pg.25]    [Pg.27]    [Pg.26]    [Pg.64]    [Pg.203]   
See also in sourсe #XX -- [ Pg.496 ]




SEARCH



1,4 - Addition-eliminations 670 1,2-ADDITIONS

Addition-elimination

Electron addition

Elimination 1,6-addition, eliminative

© 2024 chempedia.info