Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolytes, recycling

In case of organic synthesis the electrolyte recycling is performed outside of the pressure apparatus, in case of waste destruction inside of the apparatus. [Pg.36]

In this configuration, a CSTER is imbedded between two perfectly-mixed reactors 1 and 3 in the forward loop. As in model A above, electrolyte recycling is represented by a perfectly-mixed reactor 4 in the feedback loop shown in Fig.5.2-3(6). Electrolysis takes place in reactor 2 and the collector is reactor 5. [Pg.582]

Tin is obtained from cassiterite (Sn02) by reduction with C in a furnace (see Section 7.8), but a similar process cannot be applied to extract Pb from its sulfide ore since AfG°(CS2,g) is -l-67kJmol thermod5mamically viable processes involve reactions 13.1 or 13.2 at high temperatures. Both Sn and Pb are refined electrolytically. Recycling of Sn and Pb is highlighted in Box 13.1. [Pg.339]

Lime Soda. Process. Lime (CaO) reacts with a dilute (10—14%), hot (100°C) soda ash solution in a series of agitated tanks producing caustic and calcium carbonate. Although dilute alkaH solutions increase the conversion, the reaction does not go to completion and, in practice, only about 90% of the stoichiometric amount of lime is added. In this manner the lime is all converted to calcium carbonate and about 10% of the feed alkaH remains. The resulting slurry is sent to a clarifier where the calcium carbonate is removed, then washed to recover the residual alkaH. The clean calcium carbonate is then calcined to lime and recycled while the dilute caustic—soda ash solution is sent to evaporators and concentrated. The concentration process forces precipitation of the residual sodium carbonate from the caustic solution the ash is then removed by centrifugation and recycled. Caustic soda made by this process is comparable to the current electrolytic diaphragm ceU product. [Pg.527]

The ammonia values can be recycled or sold for fertilizer use. The most important consideration ia this process is the efficient elimination of the phosphoms from the product, because as Htfle as 0.01% P2 5 electrolyte causes a 1—1.5% reduction ia current efficiency for aluminum production (28). [Pg.144]

Inorganic Methods. Before the development of electrolytic processes, hydrogen peroxide was manufactured solely from metal peroxides. Eady methods based on barium peroxide, obtained by air-roasting barium oxide, used dilute sulfuric or phosphoric acid to form hydrogen peroxide in 3—8% concentration and the corresponding insoluble barium salt. Mote recent patents propose acidification with carbon dioxide and calcination of the by-product barium carbonate to the oxide for recycle. [Pg.478]

Electrolytic Preparation of Chlorine and Caustic Soda. The preparation of chlorine [7782-50-5] and caustic soda [1310-73-2] is an important use for mercury metal. Since 1989, chlor—alkali production has been responsible for the largest use for mercury in the United States. In this process, mercury is used as a flowing cathode in an electrolytic cell into which a sodium chloride [7647-14-5] solution (brine) is introduced. This brine is then subjected to an electric current, and the aqueous solution of sodium chloride flows between the anode and the mercury, releasing chlorine gas at the anode. The sodium ions form an amalgam with the mercury cathode. Water is added to the amalgam to remove the sodium [7440-23-5] forming hydrogen [1333-74-0] and sodium hydroxide and relatively pure mercury metal, which is recycled into the cell (see Alkali and chlorine products). [Pg.109]

Copper. Domestic mine production of copper metal in 1994 was over 1,800,000 t. Whereas U.S. copper production increased in the 1980s and 1990s, world supply declined in 1994. There are eight primary and five secondary smelters, nine electrolytic and six fire refiners, and fifteen solvent extraction—electro winning (SX—EW) plants. Almost 540,000 t/yr of old scrap copper and alloy are recycled in the United States accounting for - 24% of total U.S. consumption (11). New scrap accounted for 825,000 t of contained copper. Almost 80% of the new scrap was consumed by brass mills. The ratio of new-to-old scrap is about 60 40% representing 38% of U.S. supply. [Pg.565]

Oxidation and chlorination of the catalyst are then performed to ensure complete carbon removal, restore the catalyst chloride to its proper level, and maintain full platinum dispersion on the catalyst surface. Typically, the catalyst is oxidized in sufficient oxygen at about 510°C for a period of six hours or more. Sufficient chloride is added, usually as an organic chloride, to restore the chloride content and acid function of the catalyst and to provide redispersion of any platinum agglomeration that may have occurred. The catalyst is then reduced to return the metal components to their active form. This reduction is accompHshed by using a flow of electrolytic hydrogen or recycle gas from another Platforming unit at 400 to 480°C for a period of one to two hours. [Pg.224]

When a potential is appHed across the ceU, the sodum and other cations are transported across the membrane to the catholyte compartment. Sodium hydroxide is formed in the catholyte compartment, because of the rise in pH caused by the reduction of water. Any polyvalent cations are precipitated and removed. The purified NaOH may be combined with the sodium bicarbonate from the sodium dichromate process to produce soda ash for the roasting operation. In the anolyte compartment, the pH falls because of the oxidation of water. The increase in acidity results in the formation of chromic acid. When an appropriate concentration of the acid is obtained, the Hquid from the anolyte is sent to the crystallizer, the crystals are removed, and the mother Hquor is recycled to the anolyte compartment of the ceU. The electrolysis is not allowed to completely convert sodium dichromate to chromic acid (76). Patents have been granted for more electrolytic membrane processes for chromic acid and dichromates manufacture (86). [Pg.138]

The final ceU product contains 250—300 g/L H2SO in the last stages of electrolyte purification, and antimony and bismuth precipitate, resulting in heavily contaminated cathodes that are recycled through the smelter. Arsenic and hydrogen evolved at the cathodes at these later stages react to form arsine, and hoods must be provided to collect the toxic gas. [Pg.203]

For a profitable electrochemical process some general factors for success might be Hsted as high product yield and selectivity current efficiency >50%, electrolysis energy <8 kWh/kg product electrode, and membrane ia divided cells, lifetime >1000 hours simple recycle of electrolyte having >10% concentration of product simple isolation of end product and the product should be a key material and/or the company should be comfortable with the electroorganic method. [Pg.86]


See other pages where Electrolytes, recycling is mentioned: [Pg.80]    [Pg.326]    [Pg.368]    [Pg.155]    [Pg.161]    [Pg.172]    [Pg.305]    [Pg.8]    [Pg.305]    [Pg.331]    [Pg.80]    [Pg.326]    [Pg.368]    [Pg.155]    [Pg.161]    [Pg.172]    [Pg.305]    [Pg.8]    [Pg.305]    [Pg.331]    [Pg.504]    [Pg.128]    [Pg.379]    [Pg.378]    [Pg.382]    [Pg.388]    [Pg.315]    [Pg.317]    [Pg.319]    [Pg.319]    [Pg.323]    [Pg.344]    [Pg.519]    [Pg.174]    [Pg.175]    [Pg.459]    [Pg.137]    [Pg.153]    [Pg.403]    [Pg.67]    [Pg.393]    [Pg.248]    [Pg.76]    [Pg.87]   
See also in sourсe #XX -- [ Pg.9 , Pg.32 , Pg.329 ]




SEARCH



© 2024 chempedia.info