Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolysis constant

Redox" electrolysis-constant current (graphite felt electrodes)... [Pg.353]

In both preceding cases, the demands to the electrolysis unit are limited, since there is no need to keep the silver content in the fixer tank constantly low. A steady state silver concentration in the fixer between 3 and 5 g/1 is acceptable, since this causes no substantial loss of fixation speed. [Pg.605]

Coulometric methods of analysis are based on an exhaustive electrolysis of the analyte. By exhaustive we mean that the analyte is quantitatively oxidized or reduced at the working electrode or reacts quantitatively with a reagent generated at the working electrode. There are two forms of coulometry controlled-potential coulometry, in which a constant potential is applied to the electrochemical cell, and controlled-current coulometry, in which a constant current is passed through the electrochemical cell. [Pg.496]

The titrant in a conventional titration is replaced in a coulometric titration by a constant-current source whose current is analogous to the titrant s molarity. The time needed for an exhaustive electrolysis takes the place of the volume of titrant, and the switch for starting and stopping the electrolysis serves the same function as a buret s stopcock. [Pg.501]

The purity of a sample of Na2S203 was determined by a coulometric redox titration using as a mediator, and as the titrant. A sample weighing 0.1342 g is transferred to a 100-mL volumetric flask and diluted to volume with distilled water. A 10.00-mL portion is transferred to an electrochemical cell along with 25 mL of 1 M KI, 75 mL of a pH 7.0 phosphate buffer, and several drops of a starch indicator solution. Electrolysis at a constant current of 36.45 mA required 221.8 s to reach the starch indicator end point. Determine the purity of the sample. [Pg.504]

Scale of Operation Coulometric methods of analysis can be used to analyze small absolute amounts of analyte. In controlled-current coulometry, for example, the moles of analyte consumed during an exhaustive electrolysis is given by equation 11.32. An electrolysis carried out with a constant current of 100 pA for 100 s, therefore, consumes only 1 X 10 mol of analyte if = 1. For an analyte with a molecular weight of 100 g/mol, 1 X 10 mol corresponds to only 10 pg. The concentration of analyte in the electrochemical cell, however, must be sufficient to allow an accurate determination of the end point. When using visual end points, coulometric titrations require solution concentrations greater than 10 M and, as with conventional titrations, are limited to major and minor analytes. A coulometric titration to a preset potentiometric end point is feasible even with solution concentrations of 10 M, making possible the analysis of trace analytes. [Pg.507]

A 50.00-mL sample of water is placed in a coulometric cell, along with an excess of KI and a small amount of starch as an indicator. Electrolysis is carried out at a constant current of 84.6 mA, requiring 386 s to reach the starch end point. Report the concentration of H2S in the sample in parts per million. [Pg.537]

Coulometry. If it can be assumed that kinetic nuances in the solution are unimportant and that destmction of the sample is not a problem, then the simplest action may be to apply a potential to a working electrode having a surface area of several cm and wait until the current decays to zero. The potential should be sufficiently removed from the EP of the analyte, ie, about 200 mV, that the electrolysis of an interferent is avoided. The integral under the current vs time curve is a charge equal to nFCl, where n is the number of electrons needed to electrolyze the molecule, C is the concentration of the analyte, 1 is the volume of the solution, and F is the Faraday constant. [Pg.52]

An electrolysis experiment is performed to determine the value of the Faraday constant (number of coulombs per mole of electrons). In this experiment, 28.8 g of gold is plated out from a AuCN solution by running an electrolytic cell for two hours with a current of 2.00 A. What is the experimental value obtained for the Faraday constant ... [Pg.510]

On the other hand, this same amount of electricity will deposit exactly twice as much mercury, 2 x (6.03) = 12.1 grams, from a solution of mercurous perchlorate, Hg2(ClCh)2. If we restate Faraday s experimental finding in terms of the atomic theory, we see that the number of atoms of mercury deposited by a certain quantity of electricity is a constant or a simple multiple of this constant. Apparently this certain quantity of electricity can count atoms. A simple interpretation is that there are packages of electricity. During electrolysis, these packages are parcelled out, one to an atom, or two to an atom, or three. [Pg.237]

In the common method of electro-gravimetric analysis, a potential slightly in excess of the decomposition potential of the electrolyte under investigation is applied, and the electrolysis allowed to proceed without further attention, except perhaps occasionally to increase the applied potential to keep the current at approximately the same value. This procedure, termed constant-current electrolysis, is (as explained in Section 12.4) of limited value for the separation of mixtures of metallic ions. The separation of the components of a mixture where the decomposition potentials are not widely separated may be effected by the application of controlled cathode potential electrolysis. An auxiliary standard electrode (which may be a saturated calomel electrode with the tip of the salt bridge very close to the cathode or working electrode) is inserted in the... [Pg.509]

The essential requirements for a constant-current electrolytic determination — a source of direct current (which may be a mains-operated unit producing a rectified smoothed output of 3-15 volts), a variable resistance, an ammeter (reading up to 10 amperes), a voltmeter (10-15 volts), and a pair of platinum electrodes — can be readily assembled in most laboratories, but if a number of determinations are to be performed a commercial electrolysis unit will doubtless be preferred. This will be equipped with rectifier, a motor drive for a paddle-type stirrer or with a magnetic stirrer, and a hotplate. [Pg.511]

A mercury cathode finds widespread application for separations by constant current electrolysis. The most important use is the separation of the alkali and alkaline-earth metals, Al, Be, Mg, Ta, V, Zr, W, U, and the lanthanides from such elements as Fe, Cr, Ni, Co, Zn, Mo, Cd, Cu, Sn, Bi, Ag, Ge, Pd, Pt, Au, Rh, Ir, and Tl, which can, under suitable conditions, be deposited on a mercury cathode. The method is therefore of particular value for the determination of Al, etc., in steels and alloys it is also applied in the separation of iron from such elements as titanium, vanadium, and uranium. In an uncontrolled constant-current electrolysis in an acid medium the cathode potential is limited by the potential at which hydrogen ion is reduced the overpotential of hydrogen on mercury is high (about 0.8 volt), and consequently more metals are deposited from an acid solution at a mercury cathode than with a platinum cathode.10... [Pg.513]

Coulometric analysis is an application of Faraday s First Law of Electrolysis which may be expressed in the form that the extent of chemical reaction at an electrode is directly proportional to the quantity of electricity passing through the electrode. For each mole of chemical change at an electrode (96487 x n) coulombs are required i.e. the Faraday constant multiplied by the number of electrons involved in the electrode reaction. The weight of substance produced or consumed in an electrolysis involving Q coulombs is therefore given by the expression... [Pg.529]

The principle of coulometric titration. This involves the generation of a titrant by electrolysis and may be illustrated by reference to the titration of iron(II) with electro-generated cerium(IV), A large excess of Ce(III) is added to the solution containing the Fe(II) ion in the presence of, say IM sulphuric acid. Consider what happens at a platinum anode when a solution containing Fe(II) ions alone is electrolysed at constant current. Initially the reaction... [Pg.536]

In the laboratory, preparative electrolyses on the one gram scale can readily be carried out in simple three-electrode cells. The connection of such a cell to a typical potentiostat (feedback system) is illustrated in Fig. 15. It is normally desirable that the electrolysis should be carried out at constant temperature and potential and at a high rate. Hence when designing such cells it is necessary to consider a number of factors. These include the following. [Pg.213]


See other pages where Electrolysis constant is mentioned: [Pg.420]    [Pg.689]    [Pg.633]    [Pg.540]    [Pg.540]    [Pg.5]    [Pg.3]    [Pg.420]    [Pg.689]    [Pg.633]    [Pg.540]    [Pg.540]    [Pg.5]    [Pg.3]    [Pg.497]    [Pg.498]    [Pg.499]    [Pg.502]    [Pg.505]    [Pg.555]    [Pg.150]    [Pg.505]    [Pg.699]    [Pg.237]    [Pg.517]    [Pg.521]    [Pg.530]    [Pg.532]    [Pg.533]    [Pg.534]    [Pg.538]    [Pg.575]    [Pg.595]    [Pg.860]    [Pg.862]    [Pg.457]    [Pg.950]    [Pg.1032]    [Pg.183]   


SEARCH



Constant cathode potential electrolysis

Constant current electrolysis

Constant potential coulometry electrolysis

Constant potential electrolysis

Constant-current electrolysis techniques

Electrolysis Faraday constant

© 2024 chempedia.info