Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode/redox center

Eor heterogeneous electron transfer, the use of ordered organic monolayers (self-assembled monolayers or SAMs) at electrode surfaces as blocking films either with electroactive species in the electrolyte [26] or with electroactive groups tethered at the opposite end of the blocking molecule from the covalent attachment end [27] has provided a method to study the effect of electrode-redox center distance and the effect of the electrode potential on the electron-transfer rate. [Pg.554]

Further improvements can be achieved by replacing the oxygen with a non-physiological (synthetic) electron acceptor, which is able to shuttle electrons from the flavin redox center of the enzyme to the surface of the working electrode. Glucose oxidase (and other oxidoreductase enzymes) do not directly transfer electrons to conventional electrodes because their redox center is surroimded by a thick protein layer. This insulating shell introduces a spatial separation of the electron donor-acceptor pair, and hence an intrinsic barrier to direct electron transfer, in accordance with the distance dependence of the electron transfer rate (11) ... [Pg.177]

Describe various routes for facilitating the electrical communication between the redox center of glucose oxidase and an electrode surface. [Pg.202]

A great variety of suitable polymers is accessible by polymerization of vinylic monomers, or by reaction of alcohols or amines with functionalized polymers such as chloromethylat polystyrene or methacryloylchloride. The functionality in the polymer may also a ligand which can bind transition metal complexes. Examples are poly-4-vinylpyridine and triphenylphosphine modified polymers. In all cases of reactively functionalized polymers, the loading with redox active species may also occur after film formation on the electrode surface but it was recognized that such a procedure may lead to inhomogeneous distribution of redox centers in the film... [Pg.53]

Theories neglect that catalysts usually have limited turnover numbers due to destructive side reactions. This may not be so obvious in analytical experiments but it has severe consequences for large scale applications. A simple calculation can illustrate this problem if a redox polymer with a monomer molecular weight of 400 Da and a density of 1 g cm " is considered with all redox centers addressable from the electrode and accessible to the substrate with a turnover number of 1000, then, to react 1 nunol of substrate at a 1 cm electrode surface, at least 5 pmol of active catalyst centers corresponding to 2 mg of polymer, or a dry film thickness of 20 pm are required. This is 20 times more than the calculated optimum film thickness for rather favorable conditions... [Pg.66]

The field of modified electrodes spans a wide area of novel and promising research. The work dted in this article covers fundamental experimental aspects of electrochemistry such as the rate of electron transfer reactions and charge propagation within threedimensional arrays of redox centers and the distances over which electrons can be transferred in outer sphere redox reactions. Questions of polymer chemistry such as the study of permeability of membranes and the diffusion of ions and neutrals in solvent swollen polymers are accessible by new experimental techniques. There is hope of new solutions of macroscopic as well as microscopic electrochemical phenomena the selective and kinetically facile production of substances at square meters of modified electrodes and the detection of trace levels of substances in wastes or in biological material. Technical applications of electronic devices based on molecular chemistry, even those that mimic biological systems of impulse transmission appear feasible and the construction of organic polymer batteries and color displays is close to industrial use. [Pg.81]

Figure 17.4 Cartoon representation of strategies for studying and exploiting enzymes on electrodes that have been used in electrocatalysis for fuel cells, (a) Attachment or physisorption of an enzyme on an electrode such that redox centers in the protein are in direct electronic contact with the surface, (b) Specific attachment of an enzyme to an electrode modified with a substrate, cofactor, or analog that contacts the protein close to a redox center. Examples include attachment of the modifier via a conductive linker, (c) Entrapment of an enzyme within a polymer containing redox mediator molecules that transfer electrons to/from centers in the protein, (d) Attachment of an enzyme onto carbon nanotubes prepared on an electrode, giving a large surface area conducting network with direct electron transfer to each enzyme molecule. Figure 17.4 Cartoon representation of strategies for studying and exploiting enzymes on electrodes that have been used in electrocatalysis for fuel cells, (a) Attachment or physisorption of an enzyme on an electrode such that redox centers in the protein are in direct electronic contact with the surface, (b) Specific attachment of an enzyme to an electrode modified with a substrate, cofactor, or analog that contacts the protein close to a redox center. Examples include attachment of the modifier via a conductive linker, (c) Entrapment of an enzyme within a polymer containing redox mediator molecules that transfer electrons to/from centers in the protein, (d) Attachment of an enzyme onto carbon nanotubes prepared on an electrode, giving a large surface area conducting network with direct electron transfer to each enzyme molecule.
The majority of CYP enzymes are located in a hydrophobic environment in the endoplasmic reticulum of cells, although cytosolic enzymes also exist, such as CYP101. In order to mimic the physiological environment of CYP enzymes, a number of groups have used phospholipids to construct biosensors such as DDAB, dimeristoyl-L-a-phosphatidylcholine (DMPC), dilauroylphosphatidylethanolamine (DLPE) and distearoylphosphatidylethanolamine (DSPE). Phospholipid layers form stable vesicular dispersions that bear structural relationship with the phospholipid components of biologically important membranes. By this way a membranous environment is created that facilitates electron transfer between the enzyme s redox center and the electrode. [Pg.578]

In absence of any electron acceptors the reduced form of a redox enzyme can transfer an electron to an electrode of which potential is appropriately controlled, if the enzyme could be provided with an electron transport path between the redox center of the enzyme and the electrode surface. [Pg.339]

Molecular wire The redox center of an enzyme molecule is connected to an electrode with such a molecular wire as conducting polymer chain. [Pg.340]

Attaching the catalyst molecules to the electrode surface presents an obvious advantage for synthetic and sensor applications. Catalysis can then be viewed as a supported molecular catalysis. It is the object of the next section. A distinction is made between monolayer and multilayer coatings. In the former, only chemical catalysis may take place, whereas both types of catalysis are possible with multilayer coatings, thanks to their three-dimensional structure. Besides substrate transport in the bathing solution, the catalytic responses are then under the control of three main phenomena electron hopping conduction, substrate diffusion, and catalytic reaction. While several systems have been described in which electron transport and catalysis are carried out by the same redox centers, particularly interesting systems are those in which these two functions are completed by two different molecular systems. [Pg.252]

There are a number of ways of attaching a monolayer of redox molecules to an electrode surface.10 Multilayered films can be obtained by deposition of a polymer containing redox centers. These may be attached to the polymer backbone covalently, electrostatically, or coordinatively if the redox center contains a transition metal. [Pg.268]

Electron transport in electrode coatings containing redox centers is a necessary ingredient of their functioning as a catalytic device. They indeed serve as an electron shuttle between the electrode and the catalyst present inside the film. As discussed in the next section, the same molecule may play the role of catalyst and of electron carrier, since as shown earlier, redox catalysis is possible in these multilayered coatings. They may also be different, as exemplified is Section 4.3.6. [Pg.284]

Alonso et al. prepared ferrocenyl silicon dendrimers [67], which could be used as mediators in glucose biosensors, based on glucose oxidase [68, 69], The ferrocenyl units are located at the end of long, flexible, silicon containing branches and serve to electrically connect the enzyme to the electrode. The flexibility of the dendrimer is proposed to play an important role in the interaction with the redox center of glucose oxidase. [Pg.393]

Figure 3.22 (a) Cyclic voltammogram of myoglobin covalently attached to a CNT forest in PBS solution under nitrogen atmosphere. The reversible redox behavior of the iron redox center is observed, (b) and (c) electrocatalytic response of Myoglobin/CNT forest electrode to oxygen and peroxide... [Pg.152]

Enzyme biocatalyst assemblies on electrode surfaces usually do not achieve significant electron-transfer communication between the redox center and the conductive support, mostly because of the electrical insulation of the biocatalytic site by the surrounding protein matrixes. During the past four decades, several methods have been proposed and investigated in the field of bioelectrochemical technology in an effort to establish efficient electrical communication between biocatalysts and electrodes. " In general, electron transfer is classified by two different mechanisms (see Figure 2) ... [Pg.632]


See other pages where Electrode/redox center is mentioned: [Pg.45]    [Pg.52]    [Pg.57]    [Pg.77]    [Pg.81]    [Pg.595]    [Pg.598]    [Pg.600]    [Pg.631]    [Pg.114]    [Pg.71]    [Pg.82]    [Pg.84]    [Pg.86]    [Pg.90]    [Pg.157]    [Pg.490]    [Pg.501]    [Pg.566]    [Pg.566]    [Pg.570]    [Pg.570]    [Pg.571]    [Pg.572]    [Pg.409]    [Pg.423]    [Pg.528]    [Pg.108]    [Pg.31]    [Pg.31]    [Pg.126]    [Pg.148]   


SEARCH



Electrode redox electrodes

Redox electrodes

© 2024 chempedia.info