Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electricity, quantization

Charge carriers in a semiconductor are always in random thermal motion with an average thermal speed, given by the equipartion relation of classical thermodynamics as m v /2 = 3KT/2. As a result of this random thermal motion, carriers diffuse from regions of higher concentration. Applying an electric field superposes a drift of carriers on this random thermal motion. Carriers are accelerated by the electric field but lose momentum to collisions with impurities or phonons, ie, quantized lattice vibrations. This results in a drift speed, which is proportional to the electric field = p E where E is the electric field in volts per cm and is the electron s mobility in units of cm /Vs. [Pg.346]

The above measurements all rely on force and displacement data to evaluate adhesion and mechanical properties. As mentioned in the introduction, a very useful piece of information to have about a nanoscale contact would be its area (or radius). Since the scale of the contacts is below the optical limit, the techniques available are somewhat limited. Electrical resistance has been used in early contact studies on clean metal surfaces [62], but is limited to conducting interfaces. Recently, Enachescu et al. [63] used conductance measurements to examine adhesion in an ideally hard contact (diamond vs. tungsten carbide). In the limit of contact size below the electronic mean free path, but above that of quantized conductance, the contact area scales linearly with contact conductance. They used these measurements to demonstrate that friction was proportional to contact area, and the area vs. load data were best-fit to a DMT model. [Pg.201]

Eigenstates of a crystal, 725 Eigenvalues of quantum mechanical angular momentum, 396 Electrical filter response, 180 Electrical oscillatory circuit, 380 Electric charge operator, total, 542 Electrodynamics, quantum (see Quantum electrodynamics) Electromagnetic field, quantization of, 486, 560... [Pg.773]

The properties of electrons described so far (mass, charge, spin, and wave nature) apply to all electrons. Electrons traveling freely in space, electrons moving in a copper wire, and electrons bound to atoms all have these characteristics. Bound electrons, those held in a specific region in space by electrical forces, have additional important properties relating to their energies and the shapes of their waves. These additional properties can have only certain specific values, so they are said to be quantized. [Pg.468]

Fig. 4.10. The left side of the scheme represents the starting situation of pure Zeeman splitting, as described by (4.48) and shown before in Fig. 4.9. In this example, the field B = (0,0,B), which defines the quantization axis, is chosen as the z-direction. The additional quadrupole interaction, as shown on the right side of Fig. 4.10, leads to a pair-wise shift of the Zeeman states with mj = 3/2 and mi = 1/2 up- and down-wards in opposite sense. In first order, all lines are shifted by the same energy as expected from the m/-dependence of the electric... Fig. 4.10. The left side of the scheme represents the starting situation of pure Zeeman splitting, as described by (4.48) and shown before in Fig. 4.9. In this example, the field B = (0,0,B), which defines the quantization axis, is chosen as the z-direction. The additional quadrupole interaction, as shown on the right side of Fig. 4.10, leads to a pair-wise shift of the Zeeman states with mj = 3/2 and mi = 1/2 up- and down-wards in opposite sense. In first order, all lines are shifted by the same energy as expected from the m/-dependence of the electric...
Stimulation of the motoneuron releases acetylcholine onto the muscle endplate and results in contraction of the muscle fiber. Contraction and associated electrical events can be produced by intra-arterial injection of ACh close to the muscle. Since skeletal muscle does not possess inherent myogenic tone, the tone of apparently resting muscle is maintained by spontaneous and intermittent release of ACh. The consequences of spontaneous release at the motor endplate of skeletal muscle are small depolarizations from the quantized release of ACh, termed miniature endplate potentials (MEPPs) [15] (seeCh. 10). Decay times for the MEPPs range between l and 2 ms, a duration similar to the mean channel open time seen with ACh stimulation of individual receptor molecules. Stimulation of the motoneuron results in the release of several hundred quanta of ACh. The summation of MEPPs gives rise to a postsynaptic excitatory potential (PSEP),... [Pg.191]

Using this method, the M6R8/PM6R8 blend showed precisely the behavior expected for the achiral SmAPA structure. Specifically, the optical properties of the films were consistent with a biaxial smectic structure (i.e., two different refractive indices in the layer plane). The thickness of the films was quantized in units of one bilayer. Upon application of an electric field, it was seen that films with an even number of bilayers behaved in a nonpolar way, while films with an odd number of bilayers responded strongly to the field, showing that they must possess net spontaneous polarization. Note that the electric fields in this experiment are not strong enough to switch an antiferroelectric to a ferroelectric state. Reorientation of the polarization field (and director structure) of the polar film in the presence of a field can easily be seen, however. [Pg.482]

In order to understand the physics behind the observed super-high sensitivity, we investigated the optical field distribution in the microtube using cylindrical coordinates z, r, and time-independent field distribution for the resonant mode can be separated into a radial-dependent mode component and an azimuthal-dependent phase term, T lYjexpfiw J, where / is the amplitude of the axial magnetic (TE) or electric (TM) modal field and m is the azimuthal quantization... [Pg.209]

The concept of quantization enabled physicists to solve problems that nineteenth-century physics could not. One of these involved the thermal properties of solids when they are heated to incandescence. The other involved the induction of electrical current in metals when they are exposed to only specific frequencies of electromagnetic radiation. [Pg.126]

Materials and substances are composed of particles such as molecules, atoms and ions, which in turn consist of much smaller particles of electrons, positrons and neutrons. In electrochemistry, we deal primarily with charged particles of ions and electrons in addition to neutral particles. The sizes and masses of ions are the same as those of atoms for relatively light lithiiun ions the radius is 6 x 10 m and the mass is 1.1 x 10" kg. In contrast, electrons are much smaller and much lighter them ions, being 1/1,000 to 1/10,000 times smaller (classical electron radius=2.8 x 10 m, electron mass = 9.1 x 10" kg). Due to the extremely small size and mass of electrons, the quantization of electrons is more pronoimced than that of ions. Note that the electric charge carried by an electron (e = -1.602 X 10 C) is conventionally used to define the elemental unit of electric charge. [Pg.1]

The formulas A+ and A + 64 are supposed to be fully equivalent to the usual formulas A B and A B for the covalent single and double bonds but to express more specifically the quantization and electric forces involved. See the article quoted in Ref. 27. [Pg.103]

The conductance of MWCNTs is quantized. The experimental setup to measure the conducting properties involved the replacement of an STM tip with a nanotube fiber that was lowered into a liquid metal to establish the electrical contact. The conductance value observed corresponded to one unit of quantum conductance (Go = 2e /h = 12.9 kQ ). This value may reflect the conductance of the external tube because, for energetic reasons, the different layers are electrically insulated [150]. Finally, the conductance of semiconductor nanotubes depends on the voltage applied to the gate electrode their band gap is a function of their diameter and helicity [145] and the ON/OFF ratio of the transistors fabricated with semiconductor nanotubes is typically 10 at room temperature and can be as high as 10 at... [Pg.145]

FIGURE 10.3 Quantized oscillation of electrons at the surface of a metallic probe tip. This is so called surface plasmon. As the charge distribution is confined tightly at the sharp tip end, the subsequent electric field at the tip is strongly enhanced. [Pg.244]

Another possibility that could explain the effect of illumination is a change in the electric double layer surrounding the CdSe particles, either adsorbed on the substrate or in the solution, which could lower a potential barrier to adsorption and coalescence, as suggested previously for film formation from Se colloids under illumination [93]. Partial coalescence would reduce the blue spectral shift due to size quantization. However, the spectral shape is not expected to undergo a fundamental change in this case. The photoelectrochemical explanation therefore appears more reasonable. [Pg.176]

The second study of possible relevance reported that PbSe, precipitated from selenosulphate solution (not in the form of a film), was found to have an (electrical) bandgap, measured by temperature-dependent resistivity, of 0.4 eV [48], In the same study, samples prepared by reaction of solid lead tartrate with H2Se exhibited an electrical bandgap of 0.92 eV. These results suggest the occurrence of size quantization. [Pg.371]

At temperatures above absolute zero, all atoms in molecules are in continuous vibration with respect to each other [26]. Infrared spectroscopy is an absorption spectroscopy. Two primary conditions must be fulfilled for infrared absorption to occur. First, the energy of the radiation must coincide with the energy difference between excited and ground states of the molecule, i.e., it is quantized (Fig. 14.2). Radiant energy will then be absorbed by the molecule, increasing its natural vibration. Second, the vibration must entail a change in the electrical dipole moment (Fig. 14.3). [Pg.100]


See other pages where Electricity, quantization is mentioned: [Pg.2863]    [Pg.122]    [Pg.205]    [Pg.287]    [Pg.668]    [Pg.152]    [Pg.188]    [Pg.774]    [Pg.457]    [Pg.169]    [Pg.109]    [Pg.279]    [Pg.12]    [Pg.243]    [Pg.48]    [Pg.125]    [Pg.112]    [Pg.138]    [Pg.281]    [Pg.290]    [Pg.373]    [Pg.120]    [Pg.8]    [Pg.594]    [Pg.377]    [Pg.237]    [Pg.305]    [Pg.326]    [Pg.339]    [Pg.189]    [Pg.2]    [Pg.2]   
See also in sourсe #XX -- [ Pg.74 , Pg.75 ]




SEARCH



Electric quantized

Quantization

Quantized

© 2024 chempedia.info