Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrical conductivity experimental methods

Many important reactions, such as the conversion of atmospheric nitrogen and hydrogen into ammonia, are very slow and remain that way tmtil a catalyst (in this case iron oxide) is identified. In our bodies, enzymes can function as catalysts to speed up essential reactions. In order to tmderstand reaction mechanisms, chemists focus on discrete reaction steps and often need very short-term experimental methods to follow rates of individual reaction steps. For instance, Manfred Eigen and Leo De Maeyer (1955) used an electrical conductance relaxation method to measure the rate of the reaction... [Pg.1092]

Other methods attempt to probe the stmcture of the foam indirectly, without directly imaging it. Eor example, since the Hquid portion of the foam typically contains electrolytes, it conducts electrical current, and much work has been done on relating the electrical conductivity of a foam to its Hquid content, both experimentally (15) and theoretically (16). The value of the conductivity depends in a very complex fashion on not only the Hquid content and its distribution between films and borders, but the geometrical stmcture of the bubble packing arrangement. Thus electrical measurements offer only a rather cmde probe of the gas Hquid ratio, a quantity that can be accurately estimated from the foam s mass density. [Pg.429]

Thus electrical conductivity is commonly measured in units of S/cm (0 cm ). Various experimental methods have been used to measure the electrical conductivity of conductive polymers, eg, 4-probe method. Van der Pauw method, etc, and are well documented in the Hterature. [Pg.42]

Danek and his group have independently proposed a quite similar model, which they call the dissociation modeV - For this model Olteanu and Pavel have presented a versatile numerical method and its computing program. However, they calculated only the electrical conductivity or the molar conductivity of the mixtures, and the deviation of the internal mobilities of the constituting cations from the experimental data is consequently vague. [Pg.149]

In the laser flash method, the heat is put in by laser flash instead of electric current in the stepwise heating method mentioned above. Thus this method may be classified as a stepwise heating method. A two-layered laser flash method was developed by Tada et al. " The experimental method and the data analysis, including a case involving radiative heat flow, are described in detail in the review article by Waseda and Ohta. A thin metal plate is placed at the surface of a melt. A laser pulse is irradiated onto a metal plate of thickness / having high thermal conductivity. The sample liquid under the metal plate and the inert gas above the plate are designated as the third and first layers, respectively. The temperature of the second layer becomes uniform in a short time" and the response thereafter is expressed by... [Pg.186]

The above result was used as a ground-stone of the well known kinetic method of detection which was initially proposed by Myasnikov [75] more than 30 years ago. Above paper dealt with experimental comparison of the change of relative concentration of CH3 radicals in gaseous phase using the stationary values of electric conductivity and initial rate of its change. The experiment yielded perfect coincidence of the measured values. Using methyl radicals as example of adsorption it was established that the resolution of this method was better than 10 particles per cubic centimeter of the ambient volume [75, 76]. [Pg.132]

In an individual molten carbamide, the electrode processes are feebly marked at melt decomposition potentials because of its low electrical conductivity. Both electrode processes are accompanied by gas evolution (NH3, CO, C02, N2) and NH2CN (approximately) is formed in melt. In eutectic carbamide-chloride melts electrode processes take place mainly independently of each other. The chlorine must evolve at the anode during the electrolysis of carbamide - alkali metal and ammonium chloride melts, which were revealed in the electrolysis of the carbamide-KCl melt. But in the case of simultaneous oxidation of carbamide and NH4CI, however, a new compound containing N-Cl bond has been found in anode gases instead of chlorine. It is difficult to fully identify this compound by the experimental methods employed in the present work, but it can be definitely stated that... [Pg.441]

There are commonly accepted experimental standards for the determination of conductivity and specific resistance in aqueous pigment extracts [18]. The electrical conductivity y is calculated from the electrical conductance its inverse is the specific resistance f=l/-y, derived from the electrical resistance. Additional experimental methods have been developed for the determination of soluble sulfates, chlorides, and nitrates [19]. [Pg.58]

Three experimental methods that are capable of determining dissociation constants with a precision of the order of tenths of 1% have been most commonly used. Each of these methods—the cell potential method (2), the conductance method (3), and the optical method (4)—provides data that can be treated approximately, assuming that the solutions obey Henry s law, or more exactly on the basis of the methods developed in Chapter 19. We will apply the more exact procedures. As the optical method can be used only if the acid and conjugate base show substantial differences in absorption of visible or ultraviolet light, or differences in raman scattering or with the use of indicators, we shall limit our discussion to the two electrical methods. [Pg.472]

This method, which has been developed and extensively utilized in Russia [22,23], deals with nonstirred liquid phases and is based on measurements of the electrical conductivity of the aqueous phase and of its changes during extraction. In the experimental device, the two phases are initially kept separated inside a theimostated cell and then instantaneously contacted through a known contact area. At this moment, the concentration variation in one phase is recorded as a function of time, generally using conductometry. [Pg.254]

The existence of a correlation between the catalytic activity and the electrical conductivity which follows from the theory was indicated by us back in 1950 (37, 6S), when there were as yet no measurements available that could either corroborate or refute this theoretical prediction. To date we have already a whole series of experimental work in which such a correlation has been observed (e.g., 36, 56, 66-70). A number of authors have measured the electrical conductivity and the catalytic activity of various samples of a semiconductor which differed in the method of preparation and have discovered that these two properties of the semiconductor vary in the same or in opposite directions from one sample to another. The results of some of these experiments are presented in Table II. [Pg.237]

One of the most important experimental methods of studying the electron-ion recombination processes in irradiated systems are measurements of the external electric field effect on the radiation-induced conductivity. The applied electric field is expected to increase the escape probability of geminate ion pairs and, thus, enhance the number of free ions in the system, which will result in an enhanced conductivity. [Pg.264]

We must now answer the question of what experimental methods to use to investigate cases of chemisorption involving boundary layers. This is possible by means of suitable electric methods. According to measurements of the electrical conductivity and of the Hall effect of polycrystalline ZnO samples by Anderson (36), Hahn (27), Miller (26), and Volger... [Pg.225]

Measurements of the polarized reflectance in the NIR have frequently been used to obtain estimates for the transfer integrals. The method consists in fitting a reflectance model based on the Drude expression [Eq. (1)] to the experimental data. The Drude expression should be considered as a tool in estimating the plasmon frequency, ftp the background dielectric constants, e0 plasma frequency, (op and so on. The validity of the Drude analysis is limited to the conducting organic materials, with the electrical conductivity not less than a few S cm-1. [Pg.244]

The main effect of both types of electron localization, of course, is a crossover from metallic to nonmetalhc behavior (a M-NM transition). Nevertheless, it would be very beneficial to have a method of experimentally distinguishing between the effects of electron-electron Coulomb repulsion and disorder. In cases where only one or the other type of localization is present this task is relatively simpler. The Anderson transition, for example, is predicted to be continuous. That is, the zero-temperature electrical conductivity should drop to zero continuously as the impurity concentration is increased. By contrast, Mott predicted that electron-correlation effects lead to a first order, or discontinuous transition. The conductivity should show a discontinuous drop to zero with increasing impurity concentration. Unfortunately, experimental verification of a true first order Mott transition remains elusive. [Pg.299]

Theoretical interpretation of the concentration dependence of equivalent conductivity for simple binary mixtures was first presented by Markov and Shumina (1956). It should be emphasized that this theory, even when considering simple structural aspects, represents rather a method of interpretation of the experimental data than a genuine picture of the structure of the melt. In molten salts generally only ions and not molecules are present, hence the conception of Markov and Shumina (1956) is to be considered also from this aspect. Their theory is based on the assumption that the electrical conductivity of a mixture of molten salts varies with temperature like pure components. In this respect, general character of the electrical conductivity dependence on composition, indicating the interaction of components in an ideal solution, could be expected. [Pg.330]


See other pages where Electrical conductivity experimental methods is mentioned: [Pg.252]    [Pg.310]    [Pg.182]    [Pg.148]    [Pg.236]    [Pg.251]    [Pg.268]    [Pg.325]    [Pg.389]    [Pg.440]    [Pg.233]    [Pg.120]    [Pg.296]    [Pg.330]    [Pg.44]    [Pg.14]    [Pg.189]    [Pg.585]    [Pg.700]    [Pg.310]    [Pg.14]    [Pg.203]    [Pg.27]    [Pg.142]    [Pg.130]    [Pg.364]    [Pg.176]    [Pg.461]    [Pg.346]    [Pg.217]    [Pg.428]   
See also in sourсe #XX -- [ Pg.215 ]




SEARCH



Conductivity Method

© 2024 chempedia.info