Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electric polarization viscosity

It is necessary to note that fluorescence characteristics demonstrate remarkable sensitivity to variations of physicochemical parameters of the environment. Therefore, such parameters as polarity, viscosity, temperature, electric potential, local electric field, pressure, pH, etc., can be registered successfully using the modem sensitive apparatus for fluorescence detection [1, 4—12]. As a consequence, fluorescent molecules are used successfully as molecular probes to study the local characteristics of physicochemical, biochemical and biological systems. [Pg.192]

In Fig. 4.9 a hypothetical measurement of the relative intensity /lei. is shown in dependence of the time t. The switching time r is measured in the range between 10 and 90 % of the maximum signal and is thus denoted as Xio go. The switching time Tio-90 is linked to the Spontaneous electric polarization Ps and the rotational viscosity Y9 via the Equation [17, 18]... [Pg.41]

Unfortunately, the only method to gain the rotational viscosity is to measure the switching times. However, in literature the values of the diverse types of viscosity often only differ marginally and mainly depend on the temperature. Thus, it is possible to make a rough estimation of the spontaneous electric polarization by... [Pg.42]

Recently, an electrorheological effect, i.e., an increase in the viscosity and dynamic shear moduli of lecithin/n-decane solutions in the presence of small amounts of polar additives (water or glycerol) when an external electric field is applied to the system, has been observed [65]. [Pg.478]

At room temperature, atactic polystyrene is well below its glass transition temperature of approximately 100 °C. In this state, it is an amorphous glassy material that is brittle, stiff, and transparent. Due to its relatively low glass transition temperature, low heat capacity, and lack of crystallites we can readily raise its temperature until it softens. In its molten state, it is quite thermally stable so we can mold it into useful items by most of the standard conversion processes. It is particularly well suited to thermoforming due to its high melt viscosity. As it has no significant polarity, it is a good electrical insulator. [Pg.338]

The recent introduction of non-aqueous media extends the applicability of CE. Different selectivity, enhanced efficiency, reduced analysis time, lower Joule heating, and better solubility or stability of some compounds in organic solvent than in water are the main reasons for the success of non-aqueous capillary electrophoresis (NACE). Several solvent properties must be considered in selecting the appropriate separation medium (see Chapter 2) dielectric constant, viscosity, dissociation constant, polarity, autoprotolysis constant, electrical conductivity, volatility, and solvation ability. Commonly used solvents in NACE separations include acetonitrile (ACN) short-chain alcohols such as methanol (MeOH), ethanol (EtOH), isopropanol (i-PrOH) amides [formamide (FA), N-methylformamide (NMF), N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA)] and dimethylsulfoxide (DMSO). Since NACE—UV may present a lack of sensitivity due to the strong UV absorbance of some solvents at low wavelengths (e.g., formamides), the on-line coupling of NACE... [Pg.488]

The electric properties of polymers are also related to their mechanical behavior. The dielectric constant and dielectric loss factor are analogous to the elastic compliance and mechanical loss factor. Electric resistivity is analogous to viscosity. Polar polymers, such as ionomers, possess permanent dipole moments. These polar materials are capable of storing... [Pg.445]

Electrophoresis — Movement of charged particles (e.g., ions, colloidal particles, dispersions of suspended solid particles, emulsions of suspended immiscible liquid droplets) in an electric field. The speed depends on the size of the particle, as well as the -> viscosity, -> dielectric permittivity, and the -> ionic strength of the solution, and it is directly proportional to the applied electric field. In analytical as well as in synthetic chemistry electrophoresis has been employed to separate species based on different speeds attained in an experimental setup. In a typical setup the sample is put onto a mobile phase (dilute electrolyte solution) filled, e.g., into a capillary or soaked into a paper strip. At the ends of the strip connectors to an electrical power supply (providing voltages up to several hundred volts) are placed. Depending on their polarity and mobility the charged particles move to one of the electrodes, according to the attained speed they are sorted and separated. (See also - Tiselius, - electrophoretic effect, - zetapotential). [Pg.236]

In conclusion we will note that the main difference between aqueous emulsion films and foam films involves the dependences of the various parameters of these films (potential of the diffuse double electric layer, surfactant adsorption, surface viscosity, etc.) on the polarity of the organic phase, the distribution of the emulsifier between water and organic phase and the relatively low, as compared to the water/air interface, interfacial tension. [Pg.309]

We shall now discuss the depression of the static permittivity of water by the addition of eiectrolyte solutes, which is a phenomenon of some importance in the understanding of the hydration sheath of the ions. It is essentially a dielectric saturation phenomenon the strong electric fields in the neighbourhood of the ions produce a non-linear polarization, which renders the local water moleodes ineffective as regards orientation in the applied field. It is possible to make estimates of the extent of hydration, or hydration number , of water molecules considered to be bound irrotationally to the average ion these estimates are in reasonable agreement with hydration numbers estimated on the basis of activity coefficients, entropies, mobilities, and viscosities. The hydration number must be distinguished from the number of water molecules actually adjacent to the ion in the first or second layers of hydration (the hydration sheath) it does not follow that all of these molecules can be considered to be attached to the ion as it moves in the solution. [Pg.80]

An electrified liquid flows faster through a capillary because the charge on the tip repels the liquid flowing from it. The influence of an electric field on viscosity (except an alternating field) is very small with very pure liquids, and is probably zero for non-polar liquids. With polar liquids there may be a small effect. Sellerio o found the viscosity of an insulating liquid (castor oil) increased in an electric field. The flow of a liquid between solid surfaces close together seems to be influenced by electric potential gradients set up at the interfaces. [Pg.82]

The -maxima and minima on viscosity-composition curves are reminiscent of those on vapour pressure-composition curves of binary, mixtures. 5 The vapour pressures and viscosities are equal at some temperatures, say T and To, and T and To respectively. Then To/T—To7T =C(T —T), where C is a constant. A plot of TojT—To IT against T—T gives a straight line in many cases, both for vapour pressure and viscosity in other cases, the vapour pressure shows a minimum and the viscosity a maximum, and the vapour pressure a maximum and the viscosity a minimum. Prasad, 6 from the relation with vapour pressure deduced the equation rj =rjjrio= +ac, where c=conc. of non-electrolyte. The theoretical value of a is 0 00652 the observed values were glucose 0 44, fructose 0 44, sucrose 0 78, independent of temperature. According to Errera, the curves depend on the electric dipolarity of the liquids if both are nonpolar, the curve is concave to the composition axis whilst if both are polar, it is convex. Wolkowa found that the viscosity of a solution is approximately proportional to its heat of dilution. There seems to be no relation between the viscosity and surface tension of a mixture of acetic acid and water (cf. salt solutions, 13.VIII E). Mixtures of isomorphous substances obey an approximately linear relation. [Pg.120]


See other pages where Electric polarization viscosity is mentioned: [Pg.149]    [Pg.396]    [Pg.26]    [Pg.175]    [Pg.99]    [Pg.11]    [Pg.35]    [Pg.2521]    [Pg.191]    [Pg.199]    [Pg.76]    [Pg.7]    [Pg.2]    [Pg.273]    [Pg.34]    [Pg.112]    [Pg.113]    [Pg.374]    [Pg.614]    [Pg.148]    [Pg.101]    [Pg.147]    [Pg.65]    [Pg.535]    [Pg.113]    [Pg.251]    [Pg.21]    [Pg.250]    [Pg.311]    [Pg.508]    [Pg.792]    [Pg.31]    [Pg.487]    [Pg.24]    [Pg.260]    [Pg.243]    [Pg.49]    [Pg.191]    [Pg.329]   
See also in sourсe #XX -- [ Pg.226 , Pg.227 , Pg.228 , Pg.229 ]




SEARCH



Electrical polarity

Polarization electric

© 2024 chempedia.info