Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent effects electric conductivity

Besides these special physical properties, hydrogen-bonded liquid water also has unique solvent and solution properties. One feature is high proton (H ) mobility due to the ability of individual hydrogen nuclei to jump from one water molecule to the next. Recalling that at temperatures of about 300 K, the molar concentration in pure water of H3O ions is ca. 10 M, the "extra" proton can come from either of two water molecules. This freedom of to transfer from one to an adjacent "parent" molecule allows relatively high electrical conductivity. A proton added at one point in an aqueous solution causes a domino effect, because the initiating proton has only a short distance to travel to cause one to pop out somewhere else. [Pg.111]

We outline experimental results and provide theoretical interpretation of effect of adsorption of molecular oxygen and alkyl radicals in condensed media (water, proton-donor and aproton solvents) having different values of dielectric constant on electric conductivity of sensors. We have established that above parameter substantially affects the reversible changes of electric conductivity of a sensor in above media which are rigorously dependent on concentration of dissolved oxygen. [Pg.3]

Since the utility of these materials is improved by the incorporation of these reactive functionalities without severely decreasing other favorable properties such as thermooxidative stability and solvent resistance the chemistry of the isoimide isomerization and acetylene crosslinking reactions is of considerable interest. Previous work in our laboratory has shown that these materials, when loaded with metal powders, provide a convenient and effective method of optimizing the electrical conductance and thermal stability of aluminum conductor joints. [Pg.460]

Some remarks are necessary on the purity of chemicals. Ionic impurity causes a flow of electric current through polymerizing solution. This is certainly undesirable because it may give rise to a temperature rise and because it may trigger electrolytic reactions on the electrodes, which would screen the effect looked for. Thus, the solvents and monomers were most carefully purified. The impurity level was checked by the electric conductivity determined from the current and field intensities before polymerization. For example, 1,2-dichloroethane, the solvent most frequently used in our investigations, was purified until its specific conductivity was lowered below 1010 mho/cm. It should be mentioned... [Pg.349]

The electrical transport properties of alkali metals dissolved in ammonia and primary amines in many ways resemble the properties of simple electrolytes except that the anionic species is apparently the solvated electron. The electrical conductance, the transference number, the temperature coefficient of conductance, and the thermoelectric effect all reflect the presence of the solvated electron species. Whenever possible the detailed nature of the interactions of the solvated electrons with solvent and solute species is interpreted by mass action expressions. [Pg.88]

Short-lived organic radicals, electron spin resonance studies of, 5, 53 Small-ring hydrocarbons, gas-phase pyrolysis of, 4, 147 Solid state, tautomerism in the, 32, 129 Solid-state chemistry, topochemical phenomena in, 15, 63 Solids, organic, electrical conduction in, 16, 159 Solutions, reactions in, entropies of activation and mechanisms, 1, 1 Solvation and protonation in strong aqueous acids, 13, 83 Solvent effects, reaction coordinates, and reorganization energies on nucleophilic substitution reactions in aqueous solution, 38, 161 Solvent, protic and dipolar aprotic, rates of bimolecular substitution-reactions in,... [Pg.409]

A solvent, in addition to permitting the ionic charges to separate and the electrolyte solution to conduct an electrical current, also solvates the discrete ions, firstly by ion-dipole or ion-induced dipole interactions and secondly by more direct interactions, such as hydrogen bonding to anions or electron pair donation to cations. The latter interactions, thus, depend on the Lewis acidity and basicity, respectively, of the solvents (Table 4.3). The redox properties of the ions at an electrode therefore depend on their being solvated, and the solvent effects on electrode potentials or polarographic half wave potentials, or similar quantities in voltammetry are manifested through the different solvation abilities of the solvents. [Pg.114]

The proper choice of a solvent for a particular application depends on several factors, among which its physical properties are of prime importance. The solvent should first of all be liquid under the temperature and pressure conditions at which it is employed. Its thermodynamic properties, such as the density and vapour pressure, and their temperature and pressure coefficients, as well as the heat capacity and surface tension, and transport properties, such as viscosity, diffusion coefficient, and thermal conductivity also need to be considered. Electrical, optical and magnetic properties, such as the dipole moment, dielectric constant, refractive index, magnetic susceptibility, and electrical conductance are relevant too. Furthermore, molecular characteristics, such as the size, surface area and volume, as well as orientational relaxation times have appreciable bearing on the applicability of a solvent or on the interpretation of solvent effects. These properties are discussed and presented in this Chapter. [Pg.119]

The ultraviolet irradiation of halogenonitrobenzenes dissolved in ethyl ether or tetrahy-drofuran leads to an increase in the electrical conductivity of the solution relaxation of the conductivity is observed after the irradiation is stopped384. The kinetics appeared to be complicated the structure of the compound, its concentration, the nature of the solvent, the temperature, the time of irradiation as well as the light intensity had an influence on the effects. The photodegradation of three nitrochlorobenzene isomers in pure water and river water under irradiation follows first-order reaction kinetics the rate constants for the three isomers decrease in the order p-> o-> m-nitrochlorobenzene385. [Pg.908]


See other pages where Solvent effects electric conductivity is mentioned: [Pg.423]    [Pg.151]    [Pg.260]    [Pg.336]    [Pg.73]    [Pg.87]    [Pg.141]    [Pg.417]    [Pg.217]    [Pg.136]    [Pg.14]    [Pg.197]    [Pg.552]    [Pg.415]    [Pg.138]    [Pg.639]    [Pg.374]    [Pg.80]    [Pg.13]    [Pg.297]    [Pg.32]    [Pg.148]    [Pg.355]    [Pg.189]    [Pg.97]    [Pg.20]    [Pg.63]    [Pg.273]    [Pg.432]    [Pg.385]    [Pg.197]    [Pg.552]    [Pg.820]    [Pg.354]    [Pg.263]    [Pg.478]    [Pg.1901]    [Pg.87]    [Pg.199]    [Pg.20]    [Pg.334]   
See also in sourсe #XX -- [ Pg.226 ]




SEARCH



Conductance solvents

Conductivity , effect

Effective conductance

Effective conductivity

Electric effective

Electrical conductivity, effect

Electrical effects

Electricity, effects

Solvent conductivity

© 2024 chempedia.info