Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Porous media effective diffusivity

Fig. 3.7.1 Schematic of the DDIF effect in porous medium. The black areas are solid grains and the white areas are pore space. Diffusing spins in permeating fluid sample the locally variable magnetic field B(r) (solid contours sketched inside pore space) as it diffuses. Fig. 3.7.1 Schematic of the DDIF effect in porous medium. The black areas are solid grains and the white areas are pore space. Diffusing spins in permeating fluid sample the locally variable magnetic field B(r) (solid contours sketched inside pore space) as it diffuses.
These must supplement the minimal set of experiments needed to determine the available parameters in the model-It should be emphasized here, and will be re-emphasized later, Chat it is important Co direct experiments of type (i) to determining Che available parameters of some specific model of Che porous medium. Much confusion has arisen in the past frcjci results reported simply as "effective diffusion coefficients", which cannot be extrapolated with any certainty to predict... [Pg.88]

The differential material balances contain a large number of physical parameters describing the structure of the porous medium, the physical properties of the gaseous mixture diffusing through it, the kinetics of the chemical reaction and the composition and pressure of the reactant mixture outside the pellet. In such circumstances it Is always valuable to assemble the physical parameters into a smaller number of Independent dimensionless groups, and this Is best done by writing the balance equations themselves in dimensionless form. The relevant equations are (11.20), (11.21), (11.22), (11.23), (11.16) and the expression (11.27) for the effectiveness factor. [Pg.122]

Effective diffusion coefficient, in porous medium at bulk diffusion limit, 14... [Pg.195]

Diffusion within the largest cavities of a porous medium is assumed to be similar to ordinary or bulk diffusion except that it is hindered by the pore walls (see Eq. 5-236). The tortuosity T that expresses this hindrance has been estimated from geometric arguments. Unfortunately, measured values are often an order of magnitude greater than those estimates. Thus, the effective diffusivity D f (and hence t) is normally determined by comparing a diffusion model to experimental measurements. The normal range of tortuosities for sihca gel, alumina, and other porous solids is 2 < T < 6, but for activated carbon, 5 < T < 65. [Pg.600]

The ratio of the overall rate of reaction to that which would be achieved in the absence of a mass transfer resistance is referred to as the effectiveness factor rj. SCOTT and Dullion(29) describe an apparatus incorporating a diffusion cell in which the effective diffusivity De of a gas in a porous medium may be measured. This approach allows for the combined effects of molecular and Knudsen diffusion, and takes into account the effect of the complex structure of the porous solid, and the influence of tortuosity which affects the path length to be traversed by the molecules. [Pg.635]

Porous solid as pseudo-homogeneous medium 635 effective diffusivity 635 Portable mixers 306 Positive displacement pumps. 315... [Pg.887]

The Effectiveness Factor Analysis in Terms of Effective Diffusivities First-Order Reactions on Spherical Pellets. Useful expressions for catalyst effectiveness factors may also be developed in terms of the concept of effective diffusivities. This approach permits one to write an expression for the mass transfer within the pellet in terms of a form of Fick s first law based on the superficial cross-sectional area of a porous medium. We thereby circumvent the necessity of developing a detailed mathematical model of the pore geometry and size distribution. This subsection is devoted to an analysis of simultaneous mass transfer and chemical reaction in porous catalyst pellets in terms of the effective diffusivity. In order to use the analysis with confidence, the effective diffusivity should be determined experimentally, since it is difficult to obtain accurate estimates of this parameter on an a priori basis. [Pg.447]

In terms of an effective diffusivity De and a mean concentration gradient across a porous medium of thickness L, the flux through the medium may be written as ... [Pg.1006]

Regardless of the transport equation considered, the major effect of sorption on contaminant breakthrough curves is to delay the entire curve on the time axis, relative to a passive (nonsorbing) contaminant. Because of the longer residence time in the porous medium, advective-diffusive-dispersive interactions also are affected, so that longer (non-Fickian) tailing in the breakthrough curves is often observed. [Pg.232]

The in situ concentration gradient along the real diffusion path is reduced by tortuosity t. Thus the in situ flux is reduced by the same factor. This effect is incorporated in the porous medium diffusivity Dipm. If the pores are not too narrow, we get ... [Pg.816]

What makes diffusion through a porous medium different How do the relevant effects differ for diffusion in air and in water, respectively ... [Pg.829]

Diw is the molecular diffusion coefficient of the chemical in water, x is tortuosity, and aL is the (longitudinal) dispersivity (dimension L). The first term describes molecular diffusion in a porous medium (Eq. 18-57), the second the effect of dispersion (Eq. 22-52). Typical values of the dispersivity aL for field systems with flow distances of up to about 100 m lie between 1 and 100 m. Since aL depends strongly on the scale... [Pg.1155]

Both Knudsen and molecular diffusion can be described adequately for homogeneous media. However, a porous mass of solid usually contains pores of non-uniform cross-section which pursue a very tortuous path through the particle and which may intersect with many other pores. Thus the flux predicted by an equation for normal bulk diffusion (or for Knudsen diffusion) should be multiplied by a geometric factor which takes into account the tortuosity and the fact that the flow will be impeded by that fraction of the total pellet volume which is solid. It is therefore expedient to define an effective diffusivity De in such a way that the flux of material may be thought of as flowing through an equivalent homogeneous medium. We may then write ... [Pg.112]

To calculate the effective diffusivity in the region of molecular flow, the estimated value of D must be multiplied by the geometric factor e/x which is descriptive of the heterogeneous nature of the porous medium through which diffusion occurs. [Pg.113]

Here, the length L in (7.38) has been replaced by porous layer thickness d and the surface area Aeff. The effective diffusion coefficient D0,eff characterizes the transport through porous medium and includes both regular diffusion and the Knudsen diffusion coefficient >o,Kn, which has a different temperature dependence from diffusion in bulk. [Pg.237]

In the porous medium, diffusion is affected by the porosity and tortuosity of the medium itself therefore Knudsen diffusion is computed as well as the ordinary diffusion. Eventually, an effective diffusion coefficient is calculated that depends on the ordinary and Knudsen diffusion coefficients and on the ratio between porosity and tortuosity of the medium (Equation (3.58)). [Pg.216]

An important problem in catalysis is to predict diffusion and reaction rates in porous catalysts when the reaction rate can depend on concentration in a non-linear way.6 The heterogeneous system is modeled as a solid material with pores through which the reactants and products diffuse. We assume for diffusion that all the microscopic details of the porous medium are lumped together into the effective diffusion coefficient De for reactant. [Pg.226]

The constitutive equations of transport in porous media comprise both physical properties of components and pairs of components and simplifying assumptions about the geometrical characteristics of the porous medium. Two advanced effective-scale (i.e., space-averaged) models are commonly applied for description of combined bulk diffusion, Knudsen diffusion and permeation transport of multicomponent gas mixtures—Mean Transport-Pore Model (MTPM)—and Dusty Gas Model (DGM) cf. Mason and Malinauskas (1983), Schneider and Gelbin (1984), and Krishna and Wesseling (1997). The molar flux intensity of the z th component A) is the sum of the diffusion Nc- and permeation N contributions,... [Pg.159]

The ordinary diffusion equations have been presented for the case of a gas in absence of porous medium. However, in a porous medium, whose pores are all wide compared to the mean free path and provided the total pressure gradient is negligible, it is assumed that the fluxes will still satisfy the relationships of Stefan-Maxwell, since intermolecular collisions still dominate over molecule-wall collisions [19]. In the case of diffusion in porous media, the binary diffusivities are usually replaced by effective diffusion coefficients, to yield... [Pg.44]

Instead of the detailed description of mass transport inside the porous particles an effective diffusivity DtA is commonly used. For species A in a porous medium this is defined by... [Pg.51]

The Effectiveness Factor. The effectiveness factor used in Eq. (1) depends on the reactant concentration in the catalyst pores as defined by Eq. (4), which is affected by diffusion in a porous medium. [Pg.415]

The effective binary pair diffusion coefficient (T>C) in a porous medium is given by... [Pg.238]


See other pages where Porous media effective diffusivity is mentioned: [Pg.3064]    [Pg.599]    [Pg.225]    [Pg.248]    [Pg.207]    [Pg.328]    [Pg.341]    [Pg.553]    [Pg.155]    [Pg.167]    [Pg.167]    [Pg.38]    [Pg.112]    [Pg.61]    [Pg.49]    [Pg.224]    [Pg.101]    [Pg.155]    [Pg.159]    [Pg.347]    [Pg.41]    [Pg.42]    [Pg.151]    [Pg.244]    [Pg.1159]    [Pg.268]    [Pg.53]   
See also in sourсe #XX -- [ Pg.242 ]




SEARCH



Diffuse-porous

Diffusion effective

Diffusion effects diffusivity

Diffusion medium

Diffusion porous media

Effective diffusivities

Effective diffusivity

Medium effects

Medium effects diffusion

Porous media

© 2024 chempedia.info