Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Effective core potentials pseudoorbitals

The shape-consistent (or norm-conserving ) RECP approaches are most widely employed in calculations of heavy-atom molecules though ener-gy-adjusted/consistent pseudopotentials [58] by Stuttgart team are also actively used as well as the Huzinaga-type ab initio model potentials [66]. In plane wave calculations of many-atom systems and in molecular dynamics, the separable pseudopotentials [61, 62, 63] are more popular now because they provide linear scaling of computational effort with the basis set size in contrast to the radially-local RECPs. The nonrelativistic shape-consistent effective core potential was first proposed by Durand Barthelat [71] and then a modified scheme of the pseudoorbital construction was suggested by Christiansen et al. [72] and by Hamann et al. [73]. [Pg.261]

In 1992 Dmitriev, Khait, Kozlov, Labzowsky, Mitrushenkov, Shtoff and Titov [151] used shape consistent relativistic effective core potentials (RECP) to compute the spin-dependent parity violating contribution to the effective spin-rotation Hamiltonian of the diatomic molecules PbF and HgF. Their procedure involved five steps (see also [32]) i) an atomic Dirac-Hartree-Fock calculation for the metal cation in order to obtain the valence orbitals of Pb and Hg, ii) a construction of the shape consistent RECP, which is divided in a electron spin-independent part (ARECP) and an effective spin-orbit potential (ESOP), iii) a molecular SCF calculation with the ARECP in the minimal basis set consisting of the valence pseudoorbitals of the metal atom as well as the core and valence orbitals of the fluorine atom in order to obtain the lowest and the lowest H molecular state, iv) a diagonalisation of the total molecular Hamiltonian, which... [Pg.244]

Effective Core Potential methods are classified in two families, according to their basic grounds. On the one hand, the Pseudopotential methods (PP) rely on an orbital transformation called the pseudoorbital transformation and they are ultimately related to the Phillips-Kleinman equation [2]. On the other hand, the Model Potential methods (MP) do not rely on any pseudoorbital transformation and they are ultimately related to the Huzinaga-Cantu equation [3,4]. The Ab Initio Model Potential method (AIMP) belongs to the latter family and it has as a... [Pg.417]

To formalize these concepts, we first develop the frozen-core approximation, and then examine pseudoorbitals or pseudospinors and pseudopotentials. From this foundation we develop the theory for effective core potentials and ab initio model potentials. The fundamental theory is the same whether the Hamiltonian is relativistic or nonrela-tivistic the form of the one- and two-electron operators is not critical. Likewise with the orbitals the development here will be given in terms of spinors, which may be either nonrelativistic spin-orbitals or relativistic 2-spinors derived from a Foldy-Wouthuysen transformation. We will use the terminology pseudospinors because we wish to be as general as possible, but wherever this term is used, the term pseudoorbitals can be substituted. As in previous chapters, the indices p, q, r, and s will be used for any spinor, t, u, v, and w will be used for valence spinors, and a, b, c, and d will be used for virtual spinors. For core spinors we will use k, I, m, and n, and reserve i and j for electron indices and other summation indices. [Pg.397]

Using pseudopotentials has several major beneficial consequences (i) Only the valence electrons must be treated explicitly, thus the number of equations to be solved [Eqs. (13)] can be reduced drastically (ii) the pseudoorbitals are very smooth near the atomic core, and thus Tout can be reduced drastically and (iii) important relativistic effects of the core electrons of heavy elements such as the 5d elements can be included in nonrelativistic calculations. The major downsides are that the potential v(r) in Eq. (3) must be replaced with a more complicated and computationally expensive nonlocal pseudopotential and, more importantly, that the transferability of the pseudopotential, i.e., its accuracy in different bonding environments, may not be perfect. Developing highly transferable pseudopotentials that can be used at as low an cut as possible is a major current topic of research. [Pg.366]


See other pages where Effective core potentials pseudoorbitals is mentioned: [Pg.143]    [Pg.414]    [Pg.480]   
See also in sourсe #XX -- [ Pg.143 , Pg.144 ]




SEARCH



Core potential

Effective Core Potential

Effective core potentiate

Pseudoorbitals

© 2024 chempedia.info