Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Effect of Turbulent Flow

These highly oversimplified explanations ignore the effects of turbulent flow, and the formation of vortices. [Pg.153]

In Chapter 21 on box models no distinction was made between a compound being present as a dissolved species or sorbed to solid surfaces (e.g., suspended particles, sediment-water interface). In Boxes 18.5 and 19.1, and also in Illustrative Example 19.6, we learned that several of the transport and transformation processes may selectively act on either the dissolved or the sorbed form of a constituent. For instance, a molecule sitting on the surface of a sedimentaiy particle at the lake bottom does not feel the effect of turbulent flow in the lake water, while the dissolved chemical species is passively moved around by the currents. In contrast, a molecule sorbed to a suspended particle (e.g., an algal cell) can sink through the water column because of gravity, unlike its dissolved counterpart. [Pg.1059]

The well was flowed for 5 hours at some 60C b/d corresponding to transition flow. The flow tubes were then replaced and the well flowed at some 2000 b/d for 5 hours to see the eroslonal effect of turbulent flow on wax deposits. [Pg.15]

The major deficiency of the equilibrium orbit theory lies in its lack of consideration of the effect of turbulence flow on particle separation and the residence time of the particles in the hydrocyclone (as not all particles are able to find equilibrium orbits within their residence time). In spite of such weaknesses, it proves to be a reasonable approach for determining the hydro-... [Pg.847]

The effects of turbulent flow (not a true form of cavitation) on pump performance are almost identical to those described for entrained air or gas in the... [Pg.426]

The physics and modeling of turbulent flows are affected by combustion through the production of density variations, buoyancy effects, dilation due to heat release, molecular transport, and instabiUty (1,2,3,5,8). Consequently, the conservation equations need to be modified to take these effects into account. This modification is achieved by the use of statistical quantities in the conservation equations. For example, because of the variations and fluctuations in the density that occur in turbulent combustion flows, density weighted mean values, or Favre mean values, are used for velocity components, mass fractions, enthalpy, and temperature. The turbulent diffusion flame can also be treated in terms of a probabiUty distribution function (pdf), the shape of which is assumed to be known a priori (1). [Pg.520]

Detention efficiency. Conversion from the ideal basin sized by detention-time procedures to an actual clarifier requires the inclusion of an efficiency factor to account for the effects of turbulence and nonuniform flow. Efficiencies vaiy greatly, being dependent not only on the relative dimensions of the clarifier and the means of feeding but also on the characteristics of the particles. The cui ve shown in Fig. 18-83 can be used to scale up laboratoiy data in sizing circular clarifiers. The static detention time determined from a test to produce a specific effluent sohds concentration is divided by the efficiency (expressed as a fraction) to determine the nominal detention time, which represents the volume of the clarifier above the settled pulp interface divided by the overflow rate. Different diameter-depth combinations are considered by using the corresponding efficiency factor. In most cases, area may be determined by factors other than the bulksettling rate, such as practical tank-depth limitations. [Pg.1679]

In streamline flow, E is very small and approaches zero, so that xj p determines the shear stress. In turbulent flow, E is negligible at the wall and increases very rapidly with distance from the wall. LAUFER(7), using very small hot-wire anemometers, measured the velocity fluctuations and gave a valuable account of the structure of turbulent flow. In the operations of mass, heat, and momentum transfer, the transfer has to be effected through the laminar layer near the wall, and it is here that the greatest resistance to transfer lies. [Pg.75]

Static mixers are typically less effective in turbulent flow than an open tube when the comparison is made on the basis of constant pressure drop or capital cost. Whether laminar or turbulent, design correlations are generally lacking or else are vendor-proprietary and are rarely been subject to peer review. [Pg.336]

This response time should be compared to the turbulent eddy lifetime to estimate whether the drops will follow the turbulent flow. The timescale for the large turbulent eddies can be estimated from the turbulent kinetic energy k and the rate of dissipation e, Xc = 30-50 ms, for most chemical reactors. The Stokes number is an estimation of the effect of external flow on the particle movement, St = r /tc. If the Stokes number is above 1, the particles will have some random movement that increases the probability for coalescence. If St 1, the drops move with the turbulent eddies, and the rates of collisions and coalescence are very small. Coalescence will mainly be seen in shear layers at a high volume fraction of the dispersed phase. [Pg.352]

A more realistic approach to quantify the pressure field is to consider the effect of turbulence [6]. For a pipe flow, the turbulent pressure fluctuations are due to velocity perturbations as a result of the formation of eddies. The instantaneous turbulent velocity can be calculated by assuming a sinusoidal velocity variation in... [Pg.75]

In comparison with the large amount of literature that is available on the deposition of particles from laminar fluid flows, literature on turbulent deposition is virtually non-existant [114]. It was mentioned that the trajectory and convective diffusion equations also apply when the fluid inertial effects are considered, including the case of turbulent flow conditions, provided one is able to express the fluid velocities explicitly as a function of position and time. [Pg.213]

CFD might provide a way of elucidating all these spatial variations in flow conditions, in species concentrations, in bubble drop and particle sizes, and in chemical reaction rates, provided that such computational simulations are already capable of reliably reproducing the details of turbulent flows and their dynamic effects on the processes of interest. This Chapter reviews the state of the art in simulating the details of turbulent flows and turbulent mixing processes, mainly in stirred vessels. To this end, the topics of turbulence and CFD both need a separate introduction. [Pg.154]

Chemical engineers, however, have to find practical ways for dealing with turbulent flows in flow devices of complex geometry. It is their job to exploit practical tools and find practical solutions, as spatial variations in turbulence properties usually are highly relevant to the operations carried out in their process equipment. Very often, the effects of turbulent fluctuations and their spatial variations on these operations are even crucial. The classical toolbox of chemical engineers falls short in dealing with these fluctuations and its effects. Computational Fluid Dynamics (CFD) techniques offer a promising alternative approach. [Pg.155]

The focus of RANS simulations is on the time-averaged flow behavior of turbulent flows. Yet, all turbulent eddies do contribute to redistributing momentum within the flow domain and by doing so make up the inherently transient character of a turbulent-flow field. In RANS, these effects of the full range of eddies are made visible via the so-called Reynolds decomposition of the NS equations (see, e.g., Tennekes and Lumley, 1972, or Rodi, 1984) of the flow variables into mean and fluctuating components. To this end, a clear distinction is required between the temporal and spatial scales of the mean flow on the one hand and those associated with the turbulent fluctuations on the other hand. [Pg.163]

Cremer, M. A., P. A. McMurtry, and A. R. Kerstein (1994). Effects of turbulence length-scale distribution on scalar mixing in homogeneous turbulent flow. Physics of Fluids 6, 2143-2153. [Pg.411]

Komori, S., J. C. R. Hunt, K. Kanzaki, and Y. Murakami (1991b). The effects of turbulent mixing on the correlation between two species and on concentration fluctuations in non-premixed reacting flows. Journal of Fluid Mechanics 228, 629-659. [Pg.417]

The effect of turbulence in the fluid stream has been studied by Richardson and Meikle(25) who suspended a particle on a thread at the centre of a vertical pipe up which water was passed under conditions of turbulent flow. The upper end of the thread was attached to a lever fixed on a coil free to rotate in the field of an electromagnet. By passing a current through the coil it was possible to bring the level back to a null position. After calibration, the current required could be related to the force acting on the sphere. [Pg.164]

The thermodynamic approach does not make explicit the effects of concentration at the membrane. A good deal of the analysis of concentration polarisation given for ultrafiltration also applies to reverse osmosis. The control of the boundary layer is just as important. The main effects of concentration polarisation in this case are, however, a reduced value of solvent permeation rate as a result of an increased osmotic pressure at the membrane surface given in equation 8.37, and a decrease in solute rejection given in equation 8.38. In many applications it is usual to pretreat feeds in order to remove colloidal material before reverse osmosis. The components which must then be retained by reverse osmosis have higher diffusion coefficients than those encountered in ultrafiltration. Hence, the polarisation modulus given in equation 8.14 is lower, and the concentration of solutes at the membrane seldom results in the formation of a gel. For the case of turbulent flow the Dittus-Boelter correlation may be used, as was the case for ultrafiltration giving a polarisation modulus of ... [Pg.455]

To examine the effect of turbulence on flames, and hence the mass consumption rate of the fuel mixture, it is best to first recall the tacit assumption that in laminar flames the flow conditions alter neither the chemical mechanism nor the associated chemical energy release rate. Now one must acknowledge that, in many flow configurations, there can be an interaction between the character of the flow and the reaction chemistry. When a flow becomes turbulent, there are fluctuating components of velocity, temperature, density, pressure, and concentration. The degree to which such components affect the chemical reactions, heat release rate, and flame structure in a combustion system depends upon the relative characteristic times associated with each of these individual parameters. In a general sense, if the characteristic time (r0) of the chemical reaction is much shorter than a characteristic time (rm) associated with the fluid-mechanical fluctuations, the chemistry is essentially unaffected by the flow field. But if the contra condition (rc > rm) is true, the fluid mechanics could influence the chemical reaction rate, energy release rates, and flame structure. [Pg.214]

There are many different aspects to the field of turbulent reacting flows. Consider, for example, the effect of turbulence on the rate of an exothermic reaction typical of those occurring in a turbulent flow reactor. Here, the fluctuating temperatures and concentrations could affect the chemical reaction and heat release rates. Then, there is the situation in which combustion products are rapidly mixed with reactants in a time much shorter than the chemical reaction time. (This latter example is the so-called stirred reactor, which will be discussed in more detail in the next section.) In both of these examples, no flame structure is considered to exist. [Pg.215]

Figure 27. Probstein s apparatus for investigating the effect of turbulence promoters in laminar-flow UF (10)... Figure 27. Probstein s apparatus for investigating the effect of turbulence promoters in laminar-flow UF (10)...

See other pages where Effect of Turbulent Flow is mentioned: [Pg.90]    [Pg.446]    [Pg.170]    [Pg.446]    [Pg.52]    [Pg.90]    [Pg.446]    [Pg.170]    [Pg.446]    [Pg.52]    [Pg.1035]    [Pg.303]    [Pg.1295]    [Pg.113]    [Pg.337]    [Pg.145]    [Pg.443]    [Pg.26]    [Pg.211]    [Pg.235]    [Pg.249]    [Pg.65]    [Pg.341]    [Pg.357]    [Pg.16]    [Pg.21]    [Pg.132]    [Pg.139]    [Pg.219]    [Pg.14]    [Pg.225]    [Pg.658]    [Pg.77]   


SEARCH



Effect of Turbulence

Effects of Flow

Turbulence effect

Turbulence flow

Turbulent flow

Turbulent flow Turbulence

Turbulent flow in canopies on complex topography and the effects of stable stratification

© 2024 chempedia.info