Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic rendering

In Both plasticized (semi-rigid and flexible) PVC materials as well as PVC in solutions, the rate of their thermal degradation and effective stabilization are caused by essentially different fundamental phenomena in comparison to aging of PVC in absence of the solvent Both stmcture and macromolecular dynamics render the significant influence on its stability, i.e. chemical nature of the solvent (plasticizer), its basicity, specific and non-specific solvation, degree of PVC in a solution (solubility), segmental mobility of macromolecules, thermodynamic properties of the solvent (plasticizer), formation of associates, aggregates, etc. [Pg.115]

Computer Models, The actual residence time for waste destmction can be quite different from the superficial value calculated by dividing the chamber volume by the volumetric flow rate. The large activation energies for chemical reaction, and the sensitivity of reaction rates to oxidant concentration, mean that the presence of cold spots or oxidant deficient zones render such subvolumes ineffective. Poor flow patterns, ie, dead zones and bypassing, can also contribute to loss of effective volume. The tools of computational fluid dynamics (qv) are useful in assessing the extent to which the actual profiles of velocity, temperature, and oxidant concentration deviate from the ideal (40). [Pg.57]

VMD is designed for the visualization and analysis of biological systems such as proteins, nucleic acids, and lipid bilayer assemblies. It may be used to view more general molecules, as VMD can read several different structural file formats and display the contained structure. VMD provides a wide variety of methods for rendering and coloring a molecule. VMD can be used to animate and analyze the trajectory of a molecular dynamics (MD) simulation. [Pg.499]

Design modifications for the accommodation of feasible operating procedures. Section V introduced some early ideas on how the ideas of planning operating procedures could be used to identify modifications to a process flowsheet, which are necessary to render feasible operating procedures. More work is needed in this direction. Clearly, any advances in dynamic simulation with discrete-time events would have beneficial effects on this problem. [Pg.96]

Reactors which generate vortex flows (VFs) are common in both planktonic cellular and biofilm reactor applications due to the mixing provided by the VF. The generation of Taylor vortices in Couette cells has been studied by MRM to characterize the dynamics of hydrodynamic instabilities [56], The presence of the coherent flow structures renders the mass transfer coefficient approaches of limited utility, as in the biofilm capillary reactor, due to the inability to incorporate microscale details of the advection field into the mass transfer coefficient model. [Pg.528]

Although cSFC shows relatively poor figures of merit (speed, sensitivity, detection dynamic range and sample capacity) as well as a limited application area, its applications tend to be unique. These include solutes that can be solvated with pure SCCO2 and quantified with FID. Linear density programs typical in cSFC are ideal for homologous series found in surfactants, many prepolymers, etc. Selectivity in cSFC, which can be achieved by mobile phase density and temperature programming, relies on selective interactions with the stationary phase. Quantitative analysis in cSFC may be rendered difficult by small injected volumes the use of internal standards is recommended. [Pg.207]

In the following sections, we will review several ESIPT systems that have been strategically designed to probe solvent polarization coupled reaction dynamics. The experimental results render firm support of the modem theoretical model. [Pg.250]

While between the swaps the motion of the system is somewhat realistic, it is important to emphasize that the swaps between two temperatures are nonphysical. This therefore destroys the sequencing of dynamical events (that would be required to calculate, for example, time correlation functions) and renders the dynamics and kinetics artificial. [Pg.289]

In the limit of strong vibronic coupling, F4S = 0, c = 5 /3, s=, c2 - s2 =, and the dynamic Jahn-Teller effect thus renders nugatory the orbital contributions to the angular momentum, and reduces the splitting, A, by a factor of two. Note in addition that the c and s quantities used in the vibronic treatment do not correspond to those of the adiabatic case, although the expressions are formally similar, so that the static distortion, A, cannot accurately be calculated from the c and s values deduced from the and 4 data. [Pg.120]

For a family of trajectories all starting at the value X(to) and at t=t all arriving at X(t), there is one trajectory that renders the action stationary. The classical mechanical trajectory of a given dynamical system is the one for which 5S=0, i.e. the action becomes stationary. The equation of motion is obtained from this variational principle [59], The corresponding Euler-Lagrange equations are obtained d(3L/3vk)/dt = 9L/dXk. In Cartesian coordinates these equations become Newton s equations of motion for each nucleus of mass Mk ... [Pg.290]

To fully understand the anomalous dynamics of an attractive colloidal fluid from a free-volume perspective, one must consider two effects of attractions on free volumes.75 First, attractions increase the average local space available to the particles and render the free-volume distribution more inhomogeneous than when no attractions exist. These changes act to increase the mobility of the fluid. Second, strong attractions also lead to long-lived... [Pg.142]

The thermal and photochemical activations of EDA complexes by electron transfer are both enhanced when the radical ions D+- or A--(either paired or free) undergo a facile first-order (unimolecular) transformation such as fragmentation, rearrangement, bond-formation, etc., which pulls the redox equilibrium and thus renders the competition from the energy-wasting back electron transfer less effective (compare Scheme 5). Critical to the quantitative evaluation of the reaction dynamics is the understanding that the typical [D+% A--] intermediates, as described in... [Pg.264]


See other pages where Dynamic rendering is mentioned: [Pg.2559]    [Pg.350]    [Pg.84]    [Pg.559]    [Pg.2559]    [Pg.350]    [Pg.84]    [Pg.559]    [Pg.1514]    [Pg.2164]    [Pg.325]    [Pg.167]    [Pg.209]    [Pg.293]    [Pg.681]    [Pg.662]    [Pg.122]    [Pg.6]    [Pg.209]    [Pg.23]    [Pg.303]    [Pg.313]    [Pg.46]    [Pg.337]    [Pg.516]    [Pg.257]    [Pg.444]    [Pg.151]    [Pg.188]    [Pg.106]    [Pg.81]    [Pg.127]    [Pg.281]    [Pg.276]    [Pg.4]    [Pg.24]    [Pg.256]    [Pg.26]    [Pg.112]    [Pg.182]    [Pg.252]   


SEARCH



© 2024 chempedia.info