Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dynamic mechanical thermal transitions

Continued speculation exists about the exact interaction of the MQ tackifier with the polysiloxane gum. Dynamic mechanical thermal analysis of a typical silicone PSA commonly shows two major transitions a Tg at low temperatures close to that of the pure gum, and a second T at higher temperature. Increasing tackifier loadings have little effect on the first transition but, as shown in Fig. 15, they shift the second transition to increasingly higher temperature [111]. By using... [Pg.508]

An instrument designed to follow hysteresis losses in polymers by measuring the resistance to the rolling of small balls over the surface of the test piece it can investigate transitions in polymers to as low a temperature as -120 °C. Superseded by modem dynamic mechanical thermal analysis equipment. [Pg.54]

The dynamic mechanical thermal analysis also indicated molecular mixing of the two components. The Tg of the thermoplastic was lower than the composite, as determined from the inflection point of the E curve seen in Figures 13 1. The PEOX glass transition temperature appeared at 62°C, while that for PVP showed up at ll5°C. The discrepancy in the Tg of PVP had already been addressed. The Tg extrapolated from the DMTA thermogram was reported since no artifacts were to be introduced. The samples exemplified for all DMTA thermograms were processed in a normalized fashion. Any thermal or hygroscopic Influences were eliminated. Some water may be trapped in the neat thermoplastics but this was minimized since they are hot pressed at 150°C and stored under calcium... [Pg.259]

The glass transition (Ta) and melting (Tm) temperature of the pure component polymers and their blends were determined on a Perkin-Elmer (DSC-4) differential scanning calorimeter and Thermal Analysis Data Station (TADS). All materials were analyzed at a heating and cooling rate of 20°C min-1 under a purge of dry nitrogen. Dynamic mechanical properties were determined with a Polymer Laboratories, Inc. dynamic mechanical thermal analyzer interfaced to a Hewlett-Packard microcomputer. The... [Pg.467]

The dynamic mechanical thermal analyzer (DMTA) is an important tool for studying the structure-property relationships in polymer nanocomposites. DMTA essentially probes the relaxations in polymers, thereby providing a method to understand the mechanical behavior and the molecular structure of these materials under various conditions of stress and temperature. The dynamics of polymer chain relaxation or molecular mobility of polymer main chains and side chains is one of the factors that determine the viscoelastic properties of polymeric macromolecules. The temperature dependence of molecular mobility is characterized by different transitions in which a certain mode of chain motion occurs. A reduction of the tan 8 peak height, a shift of the peak position to higher temperatures, an extra hump or peak in the tan 8 curve above the glass transition temperature (Tg), and a relatively high value of the storage modulus often are reported in support of the dispersion process of the layered silicate. [Pg.109]

Mijovic et al. analyzed the annealed blends from melts using dynamic mechanical thermal analysis and achieved similar results after an adjustment for shifting factors, AT s, as shown in Figure 7.3. The results were extended to include blends having a PVDF concentration greater than 80 wt %. It can be observed that the glass transition temperatures of the annealed blends reduce rapidly when the PVDF concentrations are above 80 wt %. [Pg.124]

Most of the physical properties of the polymer (heat capacity, expansion coefficient, storage modulus, gas permeability, refractive index, etc.) undergo a discontinuous variation at the glass transition. The most frequently used methods to determine Tg are differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and dynamic mechanical thermal analysis (DMTA). But several other techniques may be also employed, such as the measurement of the complex dielectric permittivity as a function of temperature. The shape of variation of corresponding properties is shown in Fig. 4.1. [Pg.133]

Glass transition temperature, Tg, and storage modulus, E , were measured to explore how the pigment dispersion affects the material (i.e. cross-link density) and mechanical properties. Both Tg and E were determined from dynamic mechanical analysis method using a dynamic mechanical thermal analyzer (DMTA, TA Instruments RSA III) equipped with transient testing capability. A minimum of 3 to 4 specimens were analyzed from each sample. The estimated uncertainties of data are one-standard deviation. [Pg.303]

After following the microhardness behaviour during the stress-induced polymorphic transition of homo-PBT and its multiblock copolymers attention is now focused on the deformation behaviour of a blend of PBT and a PEE thermoplastic elastomer, the latter being a copolymer of PBT and PEO. This system is attractive not only because the two polymers have the same crystallizable component but also because the copolymer, being an elastomer, strongly affects the mechanical properties of the blend. It should be mentioned that these blends have been well characterized by differential scanning calorimetry, SAXS, dynamic mechanical thermal analysis and static mechanical measurements (Apostolov et al, 1994). [Pg.193]

The thermal properties (DSC second cycle), melt viscosities, and properties of test bars injected into unheated molds in a 1-oz Watson-Stillman injection-molding machine were determined as described earlier for the SDA copolyesters <2. 7. 81. The glass transition temperatures (Tg s) were determined on 1/16-in. thick injection-molded bars at 4°C/min and a frequency of 0.3 Hz with a Mark IV Dynamic Mechanical Thermal Analyzer from Polymer laboratories, Inc. [Pg.18]

The relaxation methods employed are Dynamic Mechanical Thermal Analysis (DMTA) and Dielectric Thermal Analysis (DETA). Generally in both cases a single excitation frequency is used and the temperature is varied, typically over a range between — 100 °C and +200 °C. Changes in molecular motion, and hence 7, are detected by both techniques, but in the case of DETA the process has to involve movement of dipoles or fully developed electrical charges on the polymer in order to be detected. Thus the two techniques can be used to complement each other, since transitions can be detected on DMTA and assigned as due to dipoles according to whether or not they also occur with DETA. [Pg.59]

The state diagram shown in Figure 1.5 is a plot of the states of a food as a function of the water or solids content and temperature. Most of the transitions of state can be measured by the differential scanning colorimetry (DSC) method, which detects the change in heat capacity occurring over the glass transition temperature range. Mechanical spectroscopy (or dynamic mechanical thermal... [Pg.9]

The two thermal transitions are conveniently measured by changes in properties such as specific volume and heat capacity. DSC and dynamic mechanical thermal analysis (DMTA) are normally used to determine these thermal transitions. [Pg.199]


See other pages where Dynamic mechanical thermal transitions is mentioned: [Pg.465]    [Pg.199]    [Pg.175]    [Pg.889]    [Pg.92]    [Pg.36]    [Pg.199]    [Pg.419]    [Pg.47]    [Pg.465]    [Pg.265]    [Pg.349]    [Pg.784]    [Pg.819]    [Pg.296]    [Pg.315]    [Pg.124]    [Pg.422]    [Pg.799]    [Pg.445]    [Pg.175]    [Pg.341]    [Pg.344]    [Pg.117]    [Pg.359]    [Pg.367]    [Pg.122]    [Pg.566]    [Pg.16]    [Pg.283]    [Pg.178]    [Pg.296]    [Pg.366]    [Pg.569]    [Pg.120]    [Pg.160]    [Pg.228]    [Pg.486]   
See also in sourсe #XX -- [ Pg.416 ]

See also in sourсe #XX -- [ Pg.416 ]




SEARCH



Dynamic Mechanical Behavior at Thermal Transitions

Dynamic mechanical thermal

Dynamic mechanisms

Dynamic transitions

Dynamical mechanical

Mechanism thermal

THERMAL MECHANICAL

Thermalized transitions

© 2024 chempedia.info