Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dyes, organic solvent

Uses. Tetrahydrofurfuryl alcohol is of interest in chemical and related industries where low toxicity and minimal environmental impact are important (134). For many years tetrahydrofurfuryl alcohol has been used as a specialty organic solvent. The fastest growing appHcations are in formulations for cleaners (135) and paint strippers (136), often as a replacement for chlorinated solvents (137). Other major appHcations include formulations for crop sprays, water-based paints, and the dyeing and finishing of textiles and leathers. Tetrahydrofurfuryl alcohol also finds appHcation as an intermediate in pharmaceutical appHcations. [Pg.82]

Most xanthene dyes are classified as basic dyes by their method of appHcation acid dyes can be produced by introduction of sulfonic acid groups. The fluoresceins, which contain carboxy and hydroxy substituents, are also acid dyes for coloration of silk. Some of the fluoresceins in which the carboxy group has been esterified, are soluble in alcohol or other organic solvents and can be classified as solvent dyes. Mordant dyes can be produced by introducing o-dihydroxy or sahcyhc acid groups (2), which when metallised can have very good lightfastness. [Pg.399]

More conveniently, compound (13) was directly condensed with barbituric acid (14) in acetic acid (28) or in the presence of an acid catalyst in an organic solvent (29). The same a2o dye intermediate (13) and alloxantin give riboflavin in the presence of palladium on charcoal in alcohoHc hydrochloric acid under nitrogen. This reaction may involve the reduction of the a2o group to the (9-phenylenediamine by the alloxantin, which is dehydrogenated to alloxan (see Urea) (30). [Pg.76]

Nitro-substituted indolino spiroben2opyrans or indolino spironaphthopyrans are photochromic when dissolved in organic solvents or polymer matrices (27). Absorption of uv radiation results in the colorless spiro compound [1498-88-0], C22H2gN202, being transformed into the colored, ring-opened species. This colored species is often called a photomerocyanine because of its stmctural similarity to the merocyanine dyes (see Cyanine dyes). Removal of the ultraviolet light source results in thermal reversion to the spiro compound. [Pg.164]

Cyclohexanoae is miscible with methanol, ethanol, acetone, benzene, / -hexane, nitrobenzene, diethyl ether, naphtha, xylene, ethylene glycol, isoamyl acetate, diethylamine, and most organic solvents. This ketone dissolves cellulose nitrate, acetate, and ethers, vinyl resias, raw mbber, waxes, fats, shellac, basic dyes, oils, latex, bitumea, kaure, elemi, and many other organic compounds. [Pg.425]

Efforts to raise the alpha-selectivity have been made. Thus nitration of anthraquinone using nitrogen dioxide and ozone has been reported (17). l-Amino-4-bromoanthraquinone-2-sulfonic acid (bromamine acid) [116-81 -4] (8) is the most important intermediate for manufacturing reactive and acid dyes. Bromamine acid is manufactured from l-aminoanthraquinone-2-sulfonic acid [83-62-5] (19) by bromination in aqueous medium (18—20), or in concentrated sulfuric acid (21). l-Aminoanthraquinone-2-sulfonic acid is prepared from l-aminoanthraquinone by sulfonation in an inert, high boiling point organic solvent (22), or in oleum with sodium sulfate (23). [Pg.310]

A Methylanthrapyridone and Its Derivatives. 6-Bromo-3-methylanthrapyridone [81-85-6] (75) is an important iatermediate for manufacturiag dyes soluble ia organic solvents. These solvent dyes are prepared by replacing the bromine atom with various kiads of aromatic amines. 6-Bromo-3-methylanthrapyridone is prepared from 1-methyl amino-4-bromoanthra quin one (43) by acetylation with acetic anhydride followed by ring closure ia alkaU. The startiag material of this route is anthraquiaoae-l-sulfonic acid (16). [Pg.317]

MONITORING WATER CONCENTRATION IN ORGANIC SOLVENT WITH FLUORESCENT DYES IN A SOL-GEL MEMBRANE... [Pg.42]

Extraction and flotation separation of POMs as ion-pair with a bulky cation of Astrazone Violet (AV) with different organic solvents is investigated. Conditions for separation of dye excess from ion-pair PMo TiO j with polymethine dye AV ai e found. [Pg.125]

Pyridine is a polar, stable, relatively unreactive liquid (bp 115°C) with a characteristic strong penetrating odor that is unpleasant to most people. It is miscible with both water and organic solvents. Pyridine was first isolated, like pyrrole, from bone pyrolysates. Its name is derived from the Greek for fire (pyr) and the suffix idine used to designate aromatic bases. Pyridine is used as a solvent, in addition to many other uses including products such as pharmaceuticals, vitamins, food flavorings, paints, dyes, rubber products, adhesives, insecticides, and herbicides. Pyridine can also be formed from the breakdown of many natural materials in the environment. [Pg.302]

Many fluorophores are sensitive to changes in the hydropho-bicity of the immediate environment. Therefore, bringing these fluorophores into a different environment may also produce a change in FRET, when a second fluorophore is affected by the emission change of the first. Fluorophores like Nile Red with changes of up to 100 nm when transferred from water to an aprotic organic solvent are principally suitable for such an approach [71], Molecular rotors have the characteristic of having a quantum yield that depends on the viscosity. Such dyes are formed by an electron donor unit and an electron acceptor unit that can rotate relative to each other upon photoexcitation with a behavior that depends on the viscosity of the environment. These dyes have been included in FRET probes for viscosity studies [53],... [Pg.265]

NHS ester on the dye and prevent conjugation to the dendrimer. For reactions done in organic solvent, add triethylamine to a final concentration of 1.25 times greater than the amount of reactive dye to be added to the solution. [Pg.383]


See other pages where Dyes, organic solvent is mentioned: [Pg.52]    [Pg.278]    [Pg.423]    [Pg.528]    [Pg.141]    [Pg.439]    [Pg.481]    [Pg.358]    [Pg.323]    [Pg.491]    [Pg.101]    [Pg.237]    [Pg.488]    [Pg.426]    [Pg.393]    [Pg.475]    [Pg.265]    [Pg.318]    [Pg.321]    [Pg.341]    [Pg.42]    [Pg.267]    [Pg.493]    [Pg.418]    [Pg.92]    [Pg.175]    [Pg.326]    [Pg.8]    [Pg.476]    [Pg.403]    [Pg.181]    [Pg.387]    [Pg.75]    [Pg.78]    [Pg.299]    [Pg.748]    [Pg.748]    [Pg.366]    [Pg.369]   
See also in sourсe #XX -- [ Pg.131 ]




SEARCH



Organic and inorganic pigments solvent dyes

Organic dyes

Organic solvents, polymethine dyes

Solvent dyes

© 2024 chempedia.info