Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Drying of rubber

For drying rubber by a vacuum process it is heated in a closed vessel by steam from which the air and moisture are removed by a vacuum pump. The vacuum dryer is used where fast drying of rubber is required. While a vacuum dryer is an expensive piece of equipment, the cost and upkeep of buildings and saving of time must be set against its prime cost and working expenses. [Pg.134]

The chromatographic separation should whenever possible be completed in one operation. If, however, shortage of time necessitates an interruption, this can most conveniently be made immediately after the first band has been completely eluted, whereupon the lower end of the tube is closed by a short piece of rubber tubing carrying a screw-clip. Great care should be taken however not to allow even the top of the column to run dry. [Pg.50]

Fit securely to the lower end of the condenser (as a receiver) a Buchner flask, the side-tube carrying a piece of rubber tubing which falls well below the level of the bench. Steam-distil the ethereal mixture for about 30 minutes discard the distillate, which contains the ether, possibly a trace of unchanged ethyl benzoate, and also any biphenyl, CeHs CgHs, which has been formed. The residue in the flask contains the triphenyl carbinol, which solidifies when the liquid is cooled. Filter this residual product at the pump, wash the triphenyl-carbinol thoroughly with water, drain, and then dry by pressing between several layers of thick drying-paper. Yield of crude dry product, 8 g. The triphenyl-carbinol can be recrystallised from methylated spirit (yield, 6 g.), or, if quite dry, from benzene, and so obtained as colourless crystals, m.p. 162. ... [Pg.285]

Very expensive Rapid drying of large objects suited to this method Applications for final stages of paper dryers Successful on foam rubber. Not fully developed on other materials... [Pg.1188]

The latex may then either be concentrated to about 60% DRC, usually by centrifuging or evaporation, or alternately coagulated and dried. The two approaches lead to two quite distinct branches of rubber technology, namely latex technology and dry rubber technology. [Pg.285]

Polished steel substrates primed with plasma polymerized acetylene films were immersed into a stirred mixture of these materials at a temperature of 155 5°C to simulate the curing of rubber against a primed steel substrate. During the reaction, the mixture was continuously purged with nitrogen to reduce oxidation. At appropriate times between 1 and 100 min, substrates were removed from the mixture, rinsed with hexane ultrasonically for 5 min to remove materials that had not reacted, dried, and examined using RAIR. The RAIR spectra obtained after reaction times of 0, 15, 30, and 45 min are shown in Fig. 13. [Pg.256]

There are some aspects in the raw dry NR grades for adhesive manufacturing to be considered. NR tends to suffer oxidative degradation catalyzed by metals (mainly copper). The susceptibility of NR to oxidation can be measured using the plasticity retention index. The better grades of rubber have the higher plasticity retention index. [Pg.582]

Moisture. The presence of water in a filler is not usually beneficial. Most fillers added to adhesives have a moisture content lower than 1 wt%. Only precipitated silicas and sepiolite contain about 5-10 wt% moisture. For some applications, fillers must be completely dried to exhibit adequate performance. Moisture absorbed on the surface of fillers impacts the rate and extent of curing of rubber base adhesives. [Pg.631]

Figure 16. Process flow scheme for a batch vacuum drying operation in the processing of rubber wastes. Figure 16. Process flow scheme for a batch vacuum drying operation in the processing of rubber wastes.
Surface evaporation can be a limiting factor in the manufacture of many types of products. In the drying of paper, chrome leather, certain types of synthetic rubbers and similar materials, the sheets possess a finely fibrous structure which distributes the moisture through them by capillary action, thus securing very rapid diffusion of moisture from one point of the sheet to another. This means that it is almost impossible to remove moisture from the surface of the sheet without having it immediately replaced by capillary diffusion from the interior. The drying of sheetlike materials is essentially a process of surface evaporation. Note that with porous materials, evaporation may occur within the solid. In a porous material that is characterized by pores of diverse sizes, the movement of water may be controlled by capillarity, and not by concentration gradients. [Pg.131]

Since 1960, the inner core has been made from c/5-poly-butadiene by the compression moulding technique. This replaced the earlier material made from a suspension of barytes or bentonite clay in water and glycerine or the winding of rubber threads made from t /5-polyisoprene, either from latex or a dry rubber compound. A typical thread recipe is given Table 4. [Pg.652]

These have been developed for special uses. For example, since petroleum-based materials harm natural rubber, a grease based on castor oil and lead stearate is available for use on the steel parts of rubber bushes, engine mountings, hydraulic equipment components, etc. (but not on copper or cadmium alloys). Some soft-film solvent-deposited materials have water-displacing properties and are designed for use on surfaces which cannot be dried properly, e.g. water-spaces of internal combustion engines and the cylinders or valve chests of steam engines. [Pg.758]

The precipitate is collected on filter paper (Note 7) in a Buchner funnel by vacuum filtration and is washed with 100 ml. of absolute ethanol. The solid is slurried in three 75-ml. portions of distilled water (Note 8), 100 ml. of absolute ethanol, two 100-ml. portions of reagent-grade acetone, and two 100-ml. portions of anhydrous ethyl ether. The filter cake is pressed dry in the funnel with suction by means of a piece of rubber dam, transferred to a tared, 500-ml., round-bottomed flask, and dried under reduced pressure (0.01 mm.) at room temperature for 24 hours (Note 9). The weight of the dry silver salt of succinimide is 51-54 g. (88-94%). [Pg.202]

FIGURE 26.1 Experimental friction data (left) as function log speed at different temperatures and master curve (right) of an acrylate-butadiene rubber (ABR) gum compound on a clean dry silicon carbide 180 track surface referred to room temperature. (From Grosch, K.A., Sliding Friction and Abbrasion of Rubbers, PhD thesis. University of London, London, 1963.)... [Pg.687]

Master curves of the friction coefficient have been obtained for a wide range of rubber compounds on different types of tracks for dry and wet surfaces. [Pg.688]


See other pages where Drying of rubber is mentioned: [Pg.142]    [Pg.142]    [Pg.167]    [Pg.142]    [Pg.142]    [Pg.167]    [Pg.14]    [Pg.144]    [Pg.273]    [Pg.403]    [Pg.417]    [Pg.617]    [Pg.846]    [Pg.346]    [Pg.265]    [Pg.2]    [Pg.27]    [Pg.351]    [Pg.514]    [Pg.578]    [Pg.926]    [Pg.110]    [Pg.150]    [Pg.8]    [Pg.101]    [Pg.920]    [Pg.950]    [Pg.5]    [Pg.348]    [Pg.273]    [Pg.403]    [Pg.417]    [Pg.617]    [Pg.846]    [Pg.46]    [Pg.140]   
See also in sourсe #XX -- [ Pg.167 , Pg.168 ]




SEARCH



Dry rubber

Drying of Rubbers Containing a Liquid

Production of Dry Rubber

Rubber drying

© 2024 chempedia.info