Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Drug absorption, distribution studies

Historically, drug absorption, distribution, metabolism, excretion, and toxicity ADMET) studies in animal models were performed after the identification of a lead compound. In order to avoid costs, nowadays pharmaceutical companies evaluate the ADMET profiles of potential leads at an earlier stage of the development... [Pg.607]

Mass transfer phenomena exist everywhere in nature and are important in the pharmaceutical sciences. We may think of drug synthesis preformulation studies dosage form design and manufacture and drug absorption, distribution, metabolism, and excretion. Mass transfer plays a significant role in each. Mass transfer is referred to as the movement of molecules caused not only by diffusion but also by convection [1],... [Pg.40]

To Study interactions between proteins and drugs, an available tool is the Drug Absorption, Distribution, Metabolism, and Excretion (ADME) Associated Protein Database (see Table 1.5). The database contains information about relevant proteins, functions, similarities, substrates and hgands, tissue distributions, and other features of targets. Eor the understanding of pharmacokinetic (PK) and pharmacodynamic (PD) features, some available resources are listed in Table 1.5. For example, the Pharmacokinetic and Pharmacodynamic Resources site provides links to relevant software, courses, textbooks, and journals (see Note 5). For quantitative structure-activity relationship (QSAR), the QSAR Datasets site collects data sets that are available in a structural format (see Table 1.5). [Pg.18]

Pharmacokinetics is defined as the study of the quantitative relationship between administered doses of a drug and the observed plasma/blood or tissue concentrations. The field of pharmacokinetics is concerned with drug absorption, distribution, biotransformation, and excretion or elimination. These processes, in addition to the dose, determine the concentration of drug at the effector or active site and, therefore, the intensity and duration of drug effect. [Pg.207]

The optimal administration of drugs in clinical practice is facilitated by effective application of the principles of clinical pharmacokinetics (PK) and pharmacodynamics (PD). Relationships between drug levels in the systemic circulation and various body compartments (e.g., tissues and biophase) following drug administration depend on factors governing drug absorption, distribution, elimination, and excretion (ADME). Collectively, the study of the factors that govern the ADME processes is termed pharmacokinetics. [Pg.295]

Which of the following is concerned with the study of drug absorption, distribution, metabolism, and excretion ... [Pg.22]

During the development of rivaroxaban 1, Pleiss et al. at Bayer Health Care prepared [14C]-radiolabeled rivaroxaban,22 which was required for clinical studies of drug absorption, distribution, metabolism, and excretion (ADME studies). The approach taken for the synthesis of l4C labeled rivaroxaban 38 relies on the previously reported synthesis. In the presence of EDC HCl and HOBT, 4- 4-[5S)-5-(aminomethyl)-2-oxo-l,3-oxazolidin-3-yl]phenyl -morpholin-3-one 22 was coupled with 5-chloro-2-thiophene [14C]-carboxylic acid 37 and was purified using chiral HPLC to afford the [l4C]-radiolabelled rivaroxaban 38 in 85% yield with high chemical and radiochemical purity and with an enantiomeric excess of > 99% ee (Scheme 5). Meanwhile, the metabolite M-4 of rivaroxaban (compound 39) was prepared from 5-chlorothiophenecarboxylic acid chloride 23 and [14C]glycine in 77% yield (Scheme 6). [Pg.202]

Drug efficacy and response is a function of drug concentration over time. In clinical pharmacokinetic studies, aspects of drug absorption, distribution, metabolism, and excretion over time are assessed. In the early clinical development the pharmacokinetics of a drug is studied in healthy subjects followed by studies in patient population(s) with the aim to find the relevant dose in the target population(s). Particular pharmacokinetic studies in special populations assess the necessity of a dose adjustment from the planned/established clinical dose for patients. [Pg.659]

Profiling of Drug Absorption, Distribution, Metabolism and Elimination in Man the hADME Study... [Pg.670]

Figure 31.2 shows a more detailed scheme of the main routes of drug absorption, distribution and elimination. Pharmacokinetics is the study of the drug concentrations in the different parts of the organism as a function of time. These concentrations depend on the dose administered and upon the rate and extent of absorption, distribution and elimination. [Pg.638]

Studies on identical and non-identical twins have shown that much interindividual pharmacokinetic variability is determined genetically. Pharmacokinetic variability may be caused by genetic polymorphism (the situation where several functionally distinct genes are common in a population) in genes involved in drug absorption, distribution and elimination. In recent years, several polymorphisms in genes encoding for transporter proteins have been described. These polymorphisms could alter the absorption, distribution and elimination of compounds that are substrates for these transporters. However, much work remains to be done to understand the clinical implications of these polymorphisms. [Pg.652]

This is the name given to the study of the kinetics of drug absorption, distribution, metabolism, and excretion, all of which are rate-controlled. The earliest studies, which were concerned with inhaled anaesthetics (Widmark, 1920 Dominguez, 1933), were not suited for general application. The fundamental equations were introduced by T. Teorell (1937) in his studies of insulin action. He provided simple kinetic formulae to monitor the concentration of... [Pg.109]

Studies on drug absorption, distribution, metabolism, and excretion. [Pg.2166]

The overall objective of clinical trials is to establish a drug therapy that is safe and effective in humans, to the extent that the risk-benefit relationship is acceptable. The ICH process has developed an internationally accepted definition of a clinical trial as Any investigation in human subjects intended to discover or verify the clinical, pharmacological and/or other pharmacodynamic effects of one or more investigational medicinal product(s), and/or to identify any adverse reactions to one or more investigational medicinal product(s) and/or to study absorption, distribution, metabolism and excretion of one or more investigational medicinal product(s) with the object of ascertaining its (their) safety and/or efficacy. ... [Pg.73]

Hansch and Leo [13] described the impact of Hpophihdty on pharmacodynamic events in detailed chapters on QSAR studies of proteins and enzymes, of antitumor drugs, of central nervous system agents as well as microbial and pesticide QSAR studies. Furthermore, many reviews document the prime importance of log P as descriptors of absorption, distribution, metabolism, excretion and toxicity (ADMET) properties [5-18]. Increased lipophilicity was shown to correlate with poorer aqueous solubility, increased plasma protein binding, increased storage in tissues, and more rapid metabolism and elimination. Lipophilicity is also a highly important descriptor of blood-brain barrier (BBB) permeability [19, 20]. Last, but not least, lipophilicity plays a dominant role in toxicity prediction [21]. [Pg.358]

An important part of the optimization process of potential leads to candidates suitable for clinical trials is the detailed study of the absorption, distribution, metabolism and excretion (ADME) characteristics of the most promising compounds. Experience has learned that physico-chemical properties play a key role in drug metabolism and pharmacokinetics (DMPK) [1-3]. As an example, physicochemical properties relevant to oral absorption are described in Fig. 1.1. It is important to note that these properties are not independent, but closely related to each other. [Pg.4]


See other pages where Drug absorption, distribution studies is mentioned: [Pg.504]    [Pg.105]    [Pg.18]    [Pg.2]    [Pg.545]    [Pg.688]    [Pg.115]    [Pg.567]    [Pg.2946]    [Pg.135]    [Pg.36]    [Pg.535]    [Pg.469]    [Pg.184]    [Pg.15]    [Pg.3664]    [Pg.3665]    [Pg.3669]    [Pg.441]    [Pg.215]    [Pg.227]    [Pg.237]    [Pg.26]    [Pg.449]    [Pg.293]    [Pg.407]    [Pg.207]    [Pg.5]   
See also in sourсe #XX -- [ Pg.100 ]




SEARCH



Absorption studies

Absorption, distribution

Distribution studies

Drug absorption

Drug absorption studies

© 2024 chempedia.info