Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Drop-hydrogenation

Develop the peroxidase in 3,3-diaminobenzidine tetrahydrochloride (DAB) solution 3 ml DAB stock solution and 12 drops hydrogen peroxide (30% w/v) are dissolved in 400 ml TBS incubate the specimen with this solution for 10 min (perhaps longer, control with microscope) Wash with tap water... [Pg.112]

Using a dropper, drop hydrogen peroxide solution... [Pg.741]

Drop-hydrogenation s. 12, 117 Methyl from hydroxymethyl groups via urethans... [Pg.48]

Drop-hydrogenation—Amines from cyanohydrin acetates and from 1,1-nitroethylene derivatives s. 13, 79... [Pg.386]

Table 5.28 gives the modifications in physical/chemical characteristics resulting from deeper and deeper hydrotreatment (Martin et al., 1992). The sulfur contents could thus be reduced to first as low as a few hundred ppm, then to a few ppm. The level of aromatics in the selected example drops from 39% to 7% while the cetane number increases from 49 to 60. Note here that such a treatment, possible through experimental means, does not correspond to current industrial practice because of its high cost and its very high hydrogen consumption. [Pg.265]

Hydrogen bromide may also be prepared by dropping bromine into benzene containing aluminium powder, which acts as a catalyst to the reaction ... [Pg.332]

The colour sequence already described, for the reduction of van-adium(V) to vanadium(II) by zinc and acid, gives a very characteristic test for vanadium. Addition of a few drops of hydrogen peroxide to a vanadate V) gives a red colour (formation of a peroxo-complex) (cf. titanium, which gives an orange-yellow colour). [Pg.376]

In order to allow any multiple chlorination of the biphenyl skeleton, the user may define an atom list (eonsisting of hydrogen and chlorine atoms) and substitute all H-atoms by this list. One may click on the drop-down selection box behind the element icons, select the options Generics. .set the user-defined atom to A1 and quit by the OK button. As a result this atom selection is active for the subsequent drawing steps. After this atom list is drawn ten times as the ten substituents, its composition has to be defined by clicking the A, icon on the left-hand side of the structure editor and by selecting H and Cl in the periodic table (Figure 5-16). [Pg.250]

Hydrolysis of Potassium Ethyl Sulphate. Dissolve about i g. of the crystals in about 4 ml. of cold distilled water, and divide the solution into two portions, a) To one portion, add barium chloride solution. If pure potassium ethyl sulphate were used, no precipitate should now form, as barium ethyl sulphate is soluble in water. Actually however, almost all samples of potassium ethyl sulphate contain traces of potassium hydrogen sulphate formed by slight hydrolysis of the ethyl compound during the evaporation of its solution, and barium chloride almost invariably gives a faint precipitate of barium sulphate. b) To the second portion, add 2-3 drops of concentrated hydrochloric acid, and boil the mixture gently for about one minute. Cool, add distilled water if necessary until the solution has its former volume, and then add barium chloride as before. A markedly heavier precipitate of barium sulphate separates. The hydrolysis of the potassium ethyl sulphate is hastened considerably by the presence of the free acid Caustic alkalis have a similar, but not quite so rapid an effect. [Pg.79]

Place a few drops of nitromethane in a test tube, add about 3 times as much concentrated hydrochloric acid, and then a piece of granulated tin. The tin dissolves in the acid and the nascent hydrogen produced reduces the nitromethane to monomethylamine ... [Pg.133]

To 2 ml. of the ester, add 2--3 drops of a saturated freshly prepared solution of scdium bisulphite. On shaking, a gelatinous precipitate of the bisulphite addition product (D) of the keto form separates, and on standing for 5-10 minutes usually crystallises out. This is a normal reaction of a ketone (see p. 344) hydrogen cyanide adds on similarly to give a cyanhydrin. [Pg.269]

Assemble an apparatus similar to that used in the prenous experiment, i.e., a 500 ml. conical flask fitted at the neck with a freshly-charged calcium chloride tube, a dropping-funnel, and in addition an outlet-tube joined to the water-pump so that dry air can be drawn through the calcium chloride tube and thence through the conical flask. The purpose of the air-stream is to remove as much as possible of the excess of hydrogen chloride. [Pg.310]

Fenton s reagent. To a solution of tartaric acid or a tartrate add 1 drop of freshly prepared ferrous sulphate solution, i drop of hydrogen peroxide solution and then excess of NaOH solution an intense violet coloration is produced, due to the ferric salt of dihydroxyfumaric acid, HOOC C(OH) C(OH)COOH. [Pg.352]

With the aid of a small pipette or a fine-bore dropping-tube (Fig. 30, p. 60), add about 4 drops of the filtered enzyme solution to the amine acetate solution. Using another dropping-tube add i drop of 20 volume hydrogen peroxide solution and shake well. Note the colour change which takes place. [Pg.523]

Dissolve about o i g. of />-phenylene diamine in about 10 ml. of water. Place 5 ml. of milk in each of two test-tubes A and B. Boil the milk in B thoroughly for 2 minutes and then cool. In each test-tube place 5 drops of the phenylenc diamine solution and then add i drop of 20 vol. hydrogen peroxide solution, and mix. A green coloration is produced in A, and then very rapidly changes to a slate-blue. No coloration is produced in B. This test therefore readily differentiates fresh from boiled milk. [Pg.523]

Hydrogen iodide. This gas may be conveniently prepared by allowing a solution of two parts of iodine in one part of hydriodic acid, sp. gr. 1 7 (for preparation, see Section 11,49,2), to drop on to excess of red phosphorus. The evolution of hydrogen iodide takes place in the cold when the evolution of gas slackens considerably, the mixture should be gently warmed. [Pg.182]

Fit up the apparatus shown in Fig. Ill, 31, 1 the capacity of the Claisen flask should be 100 ml. Place 40 g. (24-6 ml.) of redistilled thionyl chloride in the flask and 60 g. (62 ml.) of dry n-butyl alcohol (b.p. 116-117°) in the dropping funnel. Cool the flask in ice and add the n-butyl alcohol, with frequent shaking, over 1 hour (1). Reflux the mixture gently for 1 hour to complete the reaction and to remove the residual hydrogen chloride. Arrange the apparatus for distillation, and distil under normal pressure until the temperature rises to 120° then distil under diminished pressure (Fig. 11, 20, 1) and collect the di-n-butyl sulphite at 116-118°/20 mm. The yield is 66 g. [Pg.303]

Mix 0-2 g. of 3 5-dinitrobenzoyl chloride, 6 drops of the mercaptan and 1-3 drops of pyridine in a test-tube, and heat the mixture in a beaker of boiling water until fumes of hydrogen chloride cease to appear (15-30 minutes). Add a few drops of water, followed by a drop or two of pyridine to eliminate the excess of the reagent. The product sohdifies upon stirring with a glass rod. Add water, filter, and recrystalUse from dilute alcohol or dilute acetic acid. [Pg.501]


See other pages where Drop-hydrogenation is mentioned: [Pg.264]    [Pg.15]    [Pg.318]    [Pg.318]    [Pg.911]    [Pg.282]    [Pg.311]    [Pg.389]    [Pg.264]    [Pg.15]    [Pg.318]    [Pg.318]    [Pg.911]    [Pg.282]    [Pg.311]    [Pg.389]    [Pg.165]    [Pg.1099]    [Pg.86]    [Pg.104]    [Pg.255]    [Pg.256]    [Pg.257]    [Pg.268]    [Pg.290]    [Pg.310]    [Pg.311]    [Pg.243]    [Pg.180]    [Pg.182]    [Pg.183]    [Pg.185]    [Pg.189]    [Pg.277]    [Pg.281]    [Pg.322]    [Pg.369]    [Pg.431]    [Pg.514]   
See also in sourсe #XX -- [ Pg.12 , Pg.13 , Pg.79 , Pg.117 ]




SEARCH



© 2024 chempedia.info