Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionization doping

Figure 29 raises the question of how the energies of these two excited states evolve as one goes to longer polyene chains, in analogy to those found in polyacetylenes which become conductive upon oxidative doping (= ionization) or photoexcitation. [Pg.245]

Instead of depending on the thermally generated carriers just described (intrinsic conduction), it is also possible to deUberately incorporate various impurity atoms into the sihcon lattice that ionize at relatively low temperatures and provide either free holes or electrons. In particular. Group 13 (IIIA) elements n-type dopants) supply electrons and Group 15 (VA) elements (p-type dopants) supply holes. Over the normal doping range, one impurity atom supphes one hole or one electron. Of these elements, boron (p-type), and phosphoms, arsenic, and antimony (n-type) are most commonly used. When... [Pg.530]

Resistivity measurements of doped, alpha-siUcon carbide single crystals from —195 to 725°C showed a negative coefficient of resistivity below room temperature, which gradually changed to positive above room temperature (45). The temperature at which the changeover occurred increased as the ionization of the donor impurity increased. This is beUeved to be caused by a change in conduction mechanism. [Pg.465]

The performance of many metal-ion catalysts can be enhanced by doping with cesium compounds. This is a result both of the low ionization potential of cesium and its abiUty to stabilize high oxidation states of transition-metal oxo anions (50). Catalyst doping is one of the principal commercial uses of cesium. Cesium is a more powerflil oxidant than potassium, which it can replace. The amount of replacement is often a matter of economic benefit. Cesium-doped catalysts are used for the production of styrene monomer from ethyl benzene at metal oxide contacts or from toluene and methanol as Cs-exchanged zeofltes ethylene oxide ammonoxidation, acrolein (methacrolein) acryflc acid (methacrylic acid) methyl methacrylate monomer methanol phthahc anhydride anthraquinone various olefins chlorinations in low pressure ammonia synthesis and in the conversion of SO2 to SO in sulfuric acid production. [Pg.378]

In fact, an apparent doping effect was also reported by Schwan et al. [39] in a-C(N) H films deposited by the highly ionized plasma beam deposition technique in C2H2-N2 atmospheres. Schwan et al. also observed thermally activated behavior for the conductivity. As reported by Silva et al. [14], they also observed increasing optical gap, and decreasing ESR spin signal, but the Urbach energy was found to increase. [Pg.271]

In general, the peculiarities of the surface effects in thin semiconductors, for which application of semi-infinite geometry becomes incorrect were examined in numerous papers. As it has been shown in studies [101, 113, 121 - 123] the thickness of semiconductor adsorbent becomes one of important parameters in this case. Thus, in paper [121] the relationship was deduced for the change in conductivity and work function of a thin semiconductor with weakly ionized dopes when the surface charge was available. Paper [122] examined the effect of the charge on the temperature dependence of the work function and conductivity of substantially thin adsorbents. Papers [101, 123] focused on the dependence of the surface conductivity and value of the surface charge as functions of the thickness of semiconductor and value of the surface band bending caused by adsorption and application of external field. [Pg.41]

The conclusion regarding the fact that constant current conductivity involves not all microcrystals of the sample is proved by results of measurements of electric conductivity in sintered ZnO films in case of alternating current (Fig. 2.10). The availability of barrier-free ohmic pathways is proved by a low value of initial resistivity in sintered samples ( 1 - 5 kOhm) in addition to exponential dependence of electric conductivity plotted as a function of inverse temperature having activation energy 0.03 - 0.5 eV, which coincides with ionization energy of shallow dope levels. The same value is obtained from measurements of the temperature dependence of the Hall constant [46]. [Pg.117]

Related Polymer Systems and Synthetic Methods. Figure 12A shows a hypothetical synthesis of poly (p-phenylene methide) (PPM) from polybenzyl by redox-induced elimination. In principle, it should be possible to accomplish this experimentally under similar chemical and electrochemical redox conditions as those used here for the related polythiophenes. The electronic properties of PPM have recently been theoretically calculated by Boudreaux et al (16), including bandgap (1.17 eV) bandwidth (0.44 eV) ionization potential (4.2 eV) electron affinity (3.03 eV) oxidation potential (-0.20 vs SCE) reduction potential (-1.37 eV vs SCE). PPM has recently been synthesized and doped to a semiconductor (24). [Pg.453]

The most detailed NMR study of impurity band formation in a semiconductor in the intermediate regime involved 31P and 29 Si 7). line width and shift measurements at 8 T from 100-500 K for Si samples doped with P at levels between 4 x 1018 cm 3 and 8 x 1019 cm 3 [189], and an alternate simplified interpretation of these results in terms of an extended Korringa relation [185]. While the results and interpretation are too involved to discuss here, the important conclusion was that the conventional picture of P-doped Si at 300 K consisting of fully-ionized donors and carriers confined to extended conduction band states is inadequate. Instead, a complex of impurity bands survives in some form to doping levels as high as 1019 cm 3. A related example of an impurity NMR study of impurity bands is discussed in Sect. 3.8 for Ga-doped ZnO. [Pg.267]

Among other applications of electrolyte solution theory to defect problems should be mentioned the application of the Debye-Hiickel activity coefficients by Harvey32 to impurity ionization problems in elemental semiconductors. Recent reviews by Anderson7 and by Lawson45 emphasizing the importance of Debye-Hiickel effects in oxide semiconductors and in doped silver halides, respectively, and the book by Kroger41 contain accounts of other applications to defect problems. However, additional quantum-mechanical problems arise in the treatment of semiconductor systems and we shall not mention them further, although the studies described below are relevant to them in certain aspects. [Pg.44]

Maurer HH. 2002. Role of gas chromatography-mass spectrometry with negative ion chemical ionization in clinical and forensic toxicology, doping control, and biomonitoring. Ther Drug Monit 24 247. [Pg.173]


See other pages where Ionization doping is mentioned: [Pg.353]    [Pg.2892]    [Pg.349]    [Pg.126]    [Pg.435]    [Pg.468]    [Pg.320]    [Pg.42]    [Pg.196]    [Pg.262]    [Pg.519]    [Pg.218]    [Pg.100]    [Pg.421]    [Pg.30]    [Pg.40]    [Pg.55]    [Pg.83]    [Pg.111]    [Pg.118]    [Pg.123]    [Pg.153]    [Pg.137]    [Pg.137]    [Pg.334]    [Pg.349]    [Pg.247]    [Pg.257]    [Pg.489]    [Pg.125]    [Pg.417]    [Pg.39]    [Pg.167]    [Pg.184]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



© 2024 chempedia.info