Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Donor exciton

However, not all excitons have sufficiently long lifetimes to reach the interface before recombining. To circumvent this problem and increase device efficiency, heterostmcture devices have been fabricated. In these devices, donors and acceptors are mixed together to create a network that provides many internal interfaces where charge separation can occur. Heterostmcture devices made from the donor polymer... [Pg.245]

The use of interpenetrating donor-acceptor heterojunctions, such as PPVs/C60 composites, polymer/CdS composites, and interpenetrating polymer networks, substantially improves photoconductivity, and thus the quantum efficiency, of polymer-based photo-voltaics. In these devices, an exciton is photogenerated in the active material, diffuses toward the donor-acceptor interface, and dissociates via charge transfer across the interface. The internal electric field set up by the difference between the electrode energy levels, along with the donor-acceptor morphology, controls the quantum efficiency of the PV cell (Fig. 51). [Pg.202]

For dilute solutions of essentially independent donor and acceptor molecules the Forster or resonance interaction is quite important in molecular aggregrates and in molecular crystals exciton interactions are likely to be important. When the interaction is strong the excitation is not localized on the donor or acceptor but is spread over both. If larger aggregrates are involved, the excitation can be spread over many molecules/33-3 This can easily be seen for the case of a dimer where the donor and acceptor are... [Pg.147]

Figure 3 shows different forms of chemisorption for a C02 molecule. In the weak form of chemisorption the C02 molecule is bound to the surface by two valency bonds, as shown in Fig. 3a. This is an example of adsorption on a Mott exciton which is a pair of free valencies of opposite sign (i.e., an electron-hole pair). This may be either a free exciton wandering about the crystal or a virtual exciton generated in the very act of adsorption. As seen from Fig. 3a, in the case of the C02 molecule the weak form of chemisorption is a valency-saturated and electrically neutral form. As a result of electron capture, this form is transformed into a strong acceptor form shown in Fig. 3b, while as a result of hole capture it becomes a strong donor form shown in Fig. 3c. Both these forms are ion-radical ones. It should, however, be noted that the ion-radicals formed in these two cases are quite different and, having entered into a reaction, may cause it to proceed in different directions. Figure 3 shows different forms of chemisorption for a C02 molecule. In the weak form of chemisorption the C02 molecule is bound to the surface by two valency bonds, as shown in Fig. 3a. This is an example of adsorption on a Mott exciton which is a pair of free valencies of opposite sign (i.e., an electron-hole pair). This may be either a free exciton wandering about the crystal or a virtual exciton generated in the very act of adsorption. As seen from Fig. 3a, in the case of the C02 molecule the weak form of chemisorption is a valency-saturated and electrically neutral form. As a result of electron capture, this form is transformed into a strong acceptor form shown in Fig. 3b, while as a result of hole capture it becomes a strong donor form shown in Fig. 3c. Both these forms are ion-radical ones. It should, however, be noted that the ion-radicals formed in these two cases are quite different and, having entered into a reaction, may cause it to proceed in different directions.
At low temperatures, donors and acceptors remain neutral when they trap an electron hole pair, forming a bound exciton. Bound exciton recombination emits a characteristic luminescence peak, the energy of which is so specific that it can be used to identify the impurities present. Thewalt et al. (1985) measured the luminescence spectrum of Si samples doped by implantation with B, P, In, and T1 before and after hydrogenation. Ion implantation places the acceptors in a well-controlled thin layer that can be rapidly permeated by atomic hydrogen. In contrast, to observe acceptor neutralization by luminescence in bulk-doped Si would require long Hj treatment, since photoluminescence probes deeply below the surface due to the long diffusion length of electrons, holes, and free excitons. [Pg.122]

The introduction of electronic deep levels is demonstrated in Fig. 9 with low-temperature photoluminescence spectra for n-type (P doped, 8 Cl cm) silicon before (control) and after hydrogenation (Johnson et al., 1987a). The spectrum for the control sample is dominated by luminescence peaks that arise from the well-documented annihilation of donor-bound excitons (Dean et al., 1967). After hydrogenation with a remote hydrogen plasma, the spectrum contains several new transitions with the most prominent peaks at approximately 0.95, 0.98, and 1.03 eV. These transitions identify... [Pg.146]

Singlet excitonic energy transfer between chls is most commonly discussed in terms of the two limiting cases of very strong and very weak electronic coupling (J) between donor (D) and acceptor (A) transition dipoles [159-161]. J(cm" ) may be calculated by the expression given by Pearlstein [162]... [Pg.163]

The physical phenomenon of current generation in simple D/A systems can be thought of in terms of the six chemical steps depicted in Fig. 4. (1) The absorption of a photon leads to a localized exciton with energy oo on either the donor or... [Pg.183]

This exciton diffuses to the donor/acceptor interface via an energy-transfer mechanism (i.e., no net transport of mass or charge occurs). (3) Charge-transfer quenching of the exciton at the D/A interface produces a charge- transfer (CT) state, in the form of a coulombically interacting donor/acceptor complex (D A ). The nomenclature used to describe this species has been relatively imprecise, and has... [Pg.183]

Fig. 4 Schematic illustration of the processes leading to photocurrent generation in organic solar cells, (a) Photon absorption in Step 1 leads to excitons that may diffuse in Step 2 to the donor/ acceptor (D/A) interface. Quenching of the exciton at the D/A interface in Step 3 leads to formation of the charge-transfer (CT) state. Note that processes analogous to Steps 1-3 may also occur in the acceptor material, (b) Charge separation in Step 4 leads to free polarons that are transported through the organic layers and collected at the electrodes in Steps 5 and 6, respectively, (c) The equilibria involved in Steps 1-4- strongly influence device efficiency... Fig. 4 Schematic illustration of the processes leading to photocurrent generation in organic solar cells, (a) Photon absorption in Step 1 leads to excitons that may diffuse in Step 2 to the donor/ acceptor (D/A) interface. Quenching of the exciton at the D/A interface in Step 3 leads to formation of the charge-transfer (CT) state. Note that processes analogous to Steps 1-3 may also occur in the acceptor material, (b) Charge separation in Step 4 leads to free polarons that are transported through the organic layers and collected at the electrodes in Steps 5 and 6, respectively, (c) The equilibria involved in Steps 1-4- strongly influence device efficiency...
Stubinger T, Bruiting W (2001) Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells. J Appl Phys 90 3632... [Pg.206]


See other pages where Donor exciton is mentioned: [Pg.290]    [Pg.184]    [Pg.184]    [Pg.140]    [Pg.271]    [Pg.290]    [Pg.184]    [Pg.184]    [Pg.140]    [Pg.271]    [Pg.3017]    [Pg.3017]    [Pg.245]    [Pg.152]    [Pg.153]    [Pg.377]    [Pg.538]    [Pg.312]    [Pg.233]    [Pg.26]    [Pg.122]    [Pg.148]    [Pg.223]    [Pg.478]    [Pg.488]    [Pg.420]    [Pg.429]    [Pg.462]    [Pg.468]    [Pg.159]    [Pg.320]    [Pg.577]    [Pg.300]    [Pg.56]    [Pg.184]    [Pg.186]    [Pg.186]    [Pg.187]    [Pg.189]    [Pg.190]    [Pg.203]    [Pg.312]    [Pg.397]   
See also in sourсe #XX -- [ Pg.184 ]




SEARCH



Exciton

Exciton/excitonic

Excitons

© 2024 chempedia.info